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Abstract Let H be a Hopf algebra, H1 be a sub-Hopf algebra of H, H2 be the quotient Hopt

algebra of H modular H1. This paper gives a simplified complex by defining a new base for the cobar

complex and proves that the cobar complex of H has the same cohomology algebra with a twisted

product of the cobar complexes of H1 and H2.
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1 Introduction

Let H be a Hopf algebra, H1 be a sub-Hopf algebra of H, H2 be the quotient Hopf algebra of
H modulo H1. Cartan and Eilenberg proved[3] that there exists a spectral sequence Er

n,m,t such
that E2 = H∗,∗(H1) ⊗ H∗,∗(H2). Since the structure of the cobar complex is very complicated,
the computing of this spectral sequence remains almost unsolved. This paper gives a simplified
complex by defining a new base for the cobar complex. The idea is inspired by Zhou’s paper[6]

and I would like to express my deep gratitude to him. I must also thank Prof. Lin Jinkun for
his many useful advices.

In this paper, K is a field, all algebraic structures considered are vector spaces over K,
and most of the results of this paper can not be naturally generalized to the case when K is
a ring. All the algebras in this paper are non-negatively graded (or bigraded) and there is a
finite dimensional vector space at a fixed degree, so all the elements or bases of a vector space
are homogenous. Notice that for a commutative graded algebra xy = (−1)‖x‖‖y‖yx for any
x, y ∈ R, and that for a bigraded algebra, xy = (−1)|x||y|+‖x‖‖y‖yx, where we always use |·| to
denote the cohomological degree and ‖·‖ to denote the second algebraic degree. In this paper,
all the complexes (mainly DGA) are bigraded and all definitions cited here may be seen in the
references.

2 DGA’s and Their Products

We call a chain complex (R, d) (d : Rs,t −→ Rs+1,t) a DGA if R is an algebra with unit and
for any x, y ∈ R, dxy = (dx)y + (−1)|x|x(dy).
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Let Λ be an index set, let F ({xα}α∈Λ) be the algebra with unit freely generated by the set
{xα}α∈Λ, that is, it has a base

{1} ∪ {xα1xα2 · · ·xαn | αi ∈ Λ, i=1,· · ·,n, n=1,2,· · ·}.

A DGA (R, d) is called free if there is an index set Λ such that for any α ∈ Λ, there is an
xα ∈ R̄ and R=F ({xα}α∈Λ); the set {xα}α∈Λ is called the set of generators of (R, d). Notice
that for a given free DGA, there may be more than one set of generators, but when we are
given a free DGA, we always take a fixed set of generators.

The cobar complex of a coalgebra is just a free algebra. Let V be a coalgebra, ∆ be its
diagonal map and ε its augmentation, V̄ = kerε, let

Cs,∗ = V̄ ⊗K V̄ ⊗K · · · ⊗K V̄︸ ︷︷ ︸
s−fold

C(V ) = K ⊕
∞∑

s=1

Cs(V ).

Then ⊗K makes C(V ) an algebra; we use “|” to denote the product of C(V ) and use [a1|a2| · · ·
|an], ai ∈ V̄ to denote the element of Cs(V ). Then if {xα}α∈Λ is a base for V̄ , {[xα]}α∈Λ is a set
of generators for C(V ), and d[xα] = −∑

[x′
α|x′′

α], where ∆(xα) = 1⊗ xα + xα ⊗ 1 +
∑

x′
α ⊗ x′′

α,
so (C(V ), d) is a free DGA.

Let (R1, d1), (R2, d2) be DGA’s, (R1 ⊗ R2, d1 ⊗ d2) have a natural definition. Now we will
define the ∗-product. If {xα}α∈Λ, and {yβ}β∈Π are respectively the sets of generators of R1 and
R2, {pα′}α′∈Λ′ , {qβ′}β′∈Π′ are respectively the sets of zero relations, then the algebra R1 ∗R2 is
generated by the set {xα}α∈Λ ∪ {yβ}β∈Π with the set of zero relations {pα′}α′∈Λ′ ∪ {qβ′}β′∈Π′ ;
it is easy to check that R1 ∗ R2 is independent of the choice of the base and that R1 and R2

are all subalgebras of R1 ∗R2 and d1 and d2 have a unique extension on R1 ∗R2. Moreover, we
have (see [5]) H∗,∗(R1 ∗ R2) = H∗,∗(R1) ∗ H∗,∗(R2).

Let {Fn(R)} be a filtration of (R, d). We call it a D-filtration if for any s, t � 0,
Fs(R)Ft(R) ⊂ Fs+t(R).

Definition 2.1 Let {Fn(R)} be a D-filtration of R, define

(F0
n,s,t, d̃) = (Fn(R)s,t/Fn−1(R)s,t, d̃).

Then (F0, d̃) (regardless of the new gradation) is a DGA, its product is defined by

[x]n[y]m =

{
[xy]n+m ∈ F0

n+m,|x|+|y|,‖x‖+‖y‖, if xy /∈ Fn+m−1(R),

0, if xy ∈ Fn+m−1(R),

where x ∈ Fn(R) − Fn−1(R), y ∈ Fm(R) − Fm−1(R), [ ]k denotes the quotient image in
Fk(R)/Fk−1(R).

Notice that for any filtration {Fn(R)}, there is a spectral sequence Fr
n,s,t (r � 1) converging

to H∗,∗(R), but when {Fn(R)} is a D-filtration, H∗,∗(F0) = H∗,∗(F1), and all (Fr, dr) are DGA’s
(regardless of the new gradation).

Definition 2.2 Let (R1, d1), (R2, d2) be DGA’s. (R, d) is called a twisted product of
(R1, d1) with (R2, d2) if there exists a D-filtration {Fn(R)} such that

(
F0(R), d̃

)
=(R1⊗R2, d1⊗

d2), where “=” is both a DGA and a trigraded algebra isomorphism and R1 ⊗ R2 is trigraded
by

x ⊗ y ∈ (R1 ⊗ R2)‖y‖,|x|+|y|,‖x‖+‖y‖
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for x ∈ R1, y ∈ R2.
We denote a given twisted product by (R1 � R2, d1 � d2). The tensor product is itself a

twisted product, but there exists more complicated twisted product. By definition, (R1, d1)
is always a sub-DGA of (R1 � R2, d1 � d2). If (R2, d2) is free, then we may regard R2 as a
subalgebra of (R1�R2, d1 �d2); the reason is as follows. Suppose {uα}α∈Λ is a set of generators
of R2, {xα}α∈Λ is a subset of R1 � R2 such that [xα] = uα for all α ∈ Λ,where [ ] denotes the
quotient image. Then by definition,

[xα1xα2 · · ·xαn ] = uα1uα2 · · · uαn ,

so F ({xα}α∈Λ) is an algebra isomorphic to R2.
Definition 2.3 A DGA (R, d) with the set of generators {xα}α∈Λ is called minimal if

|xα| = 1 for all α ∈ Λ.
Let V be a coalgebra. Then (C(V ), d) is a minimal DGA.
Before we state the central theorem of this paper, we give the conditions of the theo-

rem. Let (R1, d1), (R2, d2) be two minimal DGA’s with respectively the sets of generators
{xα}α∈Λ, {yβ}β∈Π, (R, d) be a minimal DGA with the set of generators

{xα}α∈Λ ∪ {yβ}β∈Π ∪ {zγ}γ∈Λ×Π.

We call these generators of R pure letters; the finite product of pure letters is called a pure
word, then all pure words form a base for R. Now we will give a new base for R. For any
γ ∈ Λ × Π, we call dzγ a mixed letter, the finite product of mixed letters or the finite product
of mixed letters and pure letters are called a mixed word. A word is called standard if it has
no factor yβxα for all (α, β) ∈ Λ × Π. Under the conditions of the next theorem, all standard
words form a new base for R. We define the length of a word (mixed or pure) to be

‖b‖1 =

{
‖yβ‖, if b = yβ for some β ∈ Π,

0, otherwise.

If b = b1b2 · · · bn ,bi are letters, then define ‖b‖p =
∑n

i=1 ‖bi‖1.
Theorem 2.1 (R1, d1), (R2, d2), (R, d) are as above and satisfy
1. (R1, d1) is a sub-DGA of (R, d),
2. For any β ∈ Π,there exist pure words ui and ki ∈ K, such that ui /∈ R2, ‖ui‖p < ‖yβ‖,

and
dyβ = d2yβ +

∑
i

kiui,

3. For any (α, β) ∈ Λ ×Π,there exist pure words vj and kj ∈ K such that vj /∈ R2, ‖vj‖p <

‖yβ‖, and
dzα,β = −xαyβ − (−1)‖xα‖‖yβ‖yβxα +

∑
j

kjvj .

Let I be the D-ideal of (R, d) generated by all zγ and dzγ , γ ∈ Λ × Π, q:R → R/I is the
quotient map. Then q induces an isomorphism between the cohomology algebras, and (R/I, d̃)
is a twisted product of (R1, d1) with (R2, d2).

Proof It is easy to prove that d(I) ⊂ I, so (R/I, d̃) is still a DGA. By the conditions of
the theorem we can prove (see [5]) that all standard words form a base for R, and for any word
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b, if the linear combination of standard words for b is b =
∑n

i=1 kibi, then we have ‖b‖p � ‖bi‖p

for i = 1, 2, · · · , n.
Let {Fn(R)} be the subvector space of R spanned by all standard words b such that ‖b‖p �

n, n = 1, 2, · · ·. Then it is easy to prove that {Fn(R)} is a D-filtration of (R, d). Now consider
the structure of

(
F0, d̃

)
, and use [ ] to denote the quotient image. Then

d̃[xα] = [d1xα], for all α ∈ Λ[xα] ∈ F0
0,1,‖xα‖(R),

d̃[yβ] = [dyβ ] = [d2yβ], for all β ∈ Π, [yβ ] ∈ F0
‖yβ‖,1,‖yβ‖(R),

d̃[zα,β ] = [dzα,β ], for all (α, β) ∈ Λ × Π, [zα,β ] ∈ F0
0,1,‖zα,β‖(R),

d̃[dzα,β ] = 0, for all (α, β) ∈ Λ × Π, [cα,β ] ∈ F0
0,2,‖cα,β‖(R),

[xα][yβ ] = [xαyβ ] = (−1)1+‖xα‖‖yβ‖[yβ ][xα].

Let (R3, d3)
D=

(
F ({[zγ ], [dzγ ]}γ∈Λ×Π), d0

)
. Then(

F0(R), d̃
)

= ((R1 ⊗ R2) ∗ R3, (d1 ⊗ d2) ∗ d3) ,

F1
∗,∗,∗(R) = H∗,∗(R1) ⊗ H∗,∗(R2).

Since the restriction of {Fn(R)} on I is also a D-filtration of I, and an easy computa-
tion shows that (F0(I), d̃)=(R3, d3), so H∗,∗(I) = 0, q induces an isomorphism of cohomol-
ogy algebras, and it is also easy to prove that the quotient DGA (R/I, d̃) has a D-filtration
{Fn(R/I)} = {q(Fn(R))} such that(

F0(R/I), d̃
)

=(R1 ⊗ R2, d1 ⊗ d2),

so (R/I, d̃) is a twisted product.
Now let us consider the structure of (R1 � R2, d1 � d2). Let {xα}α∈Λ, {yβ}β∈Π be the sets

of generators of R1 and R2. Then R1�R2=R1⊗KR2, where “=” is a vector space isomorphism
but not an algebraic one, so we may trigraded (R1 � R2, d1 � d2) through this isomorphism as
in Definition 2.2. Then for any α ∈ Λ, β ∈ Π,

(d1 � d2)xα = d1xα,

(d1 � d2)yβ = d2yβ +
∑

zi,

xαyβ − (−1)|xα||yβ |+‖xα‖‖yβ‖yβxα =
∑

zj ,

where the new gradations of zi and zj are all less than < ‖yβ‖.

3 Applications to the Cohomology of Hopf Algebras

Definition 3.1 Let R1,R2 be two graded algebras. If we change “bigraded” in Definition
2.2 to “graded” and take d1=0, d2=0, then we get the definition of the twisted product of R1

with R2, and for two coalgebras V1, V2, we define

V1 � V2 = ((V ∗
2 � V1)∗)∗
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where ∗ denotes the dual space.
Theorem 3.1 Let V1 � V2 be a given twisted product. Then there are a twisted product

(C(V1)�C(V2)), d1 �d1) and a quotient map q:C(V1 �V2) → C(V1)�C(V2) such that q induces
an isomorphism between the cohomology algebras. If V1 �V2=V1⊗V2, the quotient DGA is also
a tensor product of DGA’s.

Proof Let {yβ}β∈Π be a base for V ∗
2 . {xα}α∈Λ is a subset of V ∗

2 � V ∗
1 such that {[xα]}α∈Λ

is a base for V ∗
1 ⊂ F0(V ∗

2 � V ∗
1 ), where [ ] denotes the quotient image in F0(V ∗

2 � V ∗
1 ). Then

V ∗
2 � V ∗

1 has a base
{xα}α∈Λ ∪ {yβ}β∈Π ∪ {xαyβ}(α,β)∈Λ×Π.

It is easy to check that [x∗
α], [y∗

β ], [(xαyβ)∗] as the elements of cobar complexes ([ ] is not
the quotient image) corresponding to xα,yβ ,zα,β in Theorem 2.1 satisfy the conditions of the
theorem. If V1 � V2=V1 ⊗ V2, then the spectral sequence collapses from F1.

For commutative, coassociative Hopf algebras, the theorem is more obvious. Let H1 be a
sub-Hopf algebra of H, I be the ideal of H generated by H1. Then H2 = H/I has a unique
induced Hopf algebra structure, and we denote it by H/H1.

Theorem 3.2 Suppose H1 is a sub-Hopf algebra of H, H2=H/H1. Then there is a quotient
map

q: (C(H), d) → (C(H1) � C(H2), d1 � d2)

that induces an isomorphism between the cohomology algebras; and if we have H=H1 ⊗ H2,
then quotient DGA is (C(H1) ⊗ C(H2), d1 ⊗ d2).

Proof By checking directly.
Now let K be the field of integers modulo an odd prime p, H = P (ξ), ‖ξ‖ be an even integer,

P be the cohomology algebra, ξ be primitive. Then it is easy to check that Vi = P (ξpi

/(ξpi+1
)

(i = 0, 1, · · ·) is a subcoalgebra of H, and it is easy to compute that H∗,∗(Vi) = P (bi) ⊗ E(hi),
where bi =

∑p−1
j=1

(
p
j

)
/p[ξjpi |ξ(p−j)pj

], hi=[ξpi

], since as an coalgebra we have H= ⊗∞
i=1 Vi; so

we have
H∗,∗ = P (b0, b1, · · ·) ⊗ E(h0, h1, · · ·).

When incorporating the computation of the multi-product <a; b1, · · · , bn>, we may compute
even more complicated Hopf algebras (see [5]).
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