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Abstract Let R be a ring and S a cancellative and torsion-free monoid and ≤ a strict order on S.

If either (S,≤) satisfies the condition that 0 ≤ s for all s ∈ S, or R is reduced, then the ring [[RS,≤]]

of the generalized power series with coefficients in R and exponents in S has the same triangulating

dimension as R. Furthermore, if R is a PWP ring, then so is [[RS,≤]].
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1 Introduction
All rings considered here are associative with identity and R denotes such a ring. Any concept
and notation not defined here can be found in [1, 2].

Recall from [3, 4] that an idempotent e ∈ R is left (resp. right) semicentral in R if ere = re
(resp. ere = er), for all r ∈ R. Equivalently, e2 = e ∈ R is left (resp. right) semicentral if
eR (resp. Re) is an ideal of R. We use Sl(R) and Sr(R) for the sets of all left and all right
semicentral idempotents of R, respectively. From [5], an idempotent e of R is called semicentral
reduced if Sl(eRe) = {0, e}. A ring R is called semicentral reduced [5, 6] if 1 is semicentral
reduced. From [5] a ring R has a generalized triangular matrix representation if there exists a
ring isomorphism

θ : R −→

⎛
⎜⎜⎝

R1 R12 · · · R1n

0 R2 · · · R2n
...

...
. . .

...
0 0 · · · Rn

⎞
⎟⎟⎠ ,

where each diagonal ring, Ri, is a ring with unity, Rij is a left Ri-right Rj-bimodule for i < j,
and the matrices obey the usual rules for matrix addition and multiplication. If each Ri is
semicentral reduced, then R has a complete generalized triangular matrix representation with
triangulating dimension n ([5, 7]).

Recall from [3, 5, 7] that a piecewise prime ring (PWP ring for short) is a quasi-Baer
ring with finite triangulating dimension. In [5, Corollary 4.13] it was shown that the class
of PWP rings properly includes all piecewise domains which were introduced in [8] (hence all
right hereditary rings which are semiprimary or right Noetherian). Every PWP ring has a
complete generalized triangular matrix representation with prime diagonal rings, Ri, (see [5,
Theorem 4.4]). It was observed in [8, p. 554] that n-by-n matrix rings and polynomial rings
over piecewise domains are again piecewise domains. In [7], Birkenmeier and Keol Park showed
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that for a PWP ring R the following ring extensions are PWP rings: R[G], the monoid ring of
a u.p.-monoid G; R[X] and R[[X]], where X is a nonempty set of not necessarily commuting
indeterminates; R[x, x−1] and R[[x, x−1]], the Laurent polynomial ring and Laurent series ring,
respectively; R[x; α] and R[[x; α]], the skew polynomial and skew power series ring, respectively,
where α is a particular type of ring automorphism of R; Tn(R) and Matn(R) the n-by-n upper
triangular and full matrix rings over R, respectively. Also the open problems raised in [7] to
enlarge the class of ring extensions of PWP rings which are also PWP rings and to enlarge
the class of ring extensions of rings with finite triangulating dimension which also have finite
triangulating dimension. In this paper we will show that, under some additional conditions,
the ring [[RS,≤]] of generalized power series with coefficients in R and exponents in S has the
same triangulating dimension as R. Furthermore, if R is a PWP ring, then so is [[RS,≤]], hence
[[RS,≤]] has a complete generalized triangular matrix representation with prime diagonal rings.
In fact, we work for a more general ring extension which is called the twisted generalized power
series rings introduced in Section 2. Thus our results hold for twisted generalized power series
rings [[RS,≤, λ]].

2 Twisted Generalized Power Series Rings

Let (S,≤) be an ordered set. Recall that (S,≤) is artinian if every strictly decreasing sequence of
elements of S is finite, and that (S,≤) is narrow if every subset of pairwise order-incomparable
elements of S is finite. Henceforth S always denotes a commutative monoid. Unless stated
otherwise, the operation of S shall be denoted additively, and the neutral element by 0.

Let (S,≤) be a strictly ordered monoid (that is, (S,≤) is an ordered monoid satisfying the
condition that if s, s′, t ∈ S and s < s′, then s+ t < s′ + t), and R a ring. Let [[RS,≤]] be the set
of all maps f : S −→ R such that supp(f) = {s ∈ S|f(s) �= 0} is artinian and narrow. For any
s ∈ S and any f1, f2, . . . , fn ∈ [[RS,≤]], denote Xs(f1, f2, . . . , fn) = {(u1, u2, . . . , un) ∈ Sn|s =
u1 + u2 + · · ·+ un, f1(u1) �= 0, f2(u2) �= 0, . . . , fn(un) �= 0}. The following result appeared in [2,
4.1].

Lemma 2.1 Xs(f1, f2, . . . , fn) is a finite set.

Denote by R End(R) the set of all ring homomorphisms from R to R. Let λ : S −→
R End(R) be a map satisfying the following condition:

λ(u + v) = λ(u)λ(v), ∀u, v ∈ S.

For any f, g ∈ [[RS,≤]], define fg : S −→ [[RS,≤]] via

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)λ(u)(g(v)).

Note that there are only finitely many non-zero summands. It is easy to see that supp(fg) ⊆
supp(f)+supp(g). Thus by [2, 2.1], supp(fg) is artinian and narrow, hence fg ∈ [[RS,≤]]. This
defines a binary operation of multiplication on [[RS,≤]].

For any f, g, h ∈ [[RS,≤]] and any s ∈ S,

(f(gh))(s) =
∑

(u,u′)∈Xs(f,gh)

f(u)λ(u)((gh)(u′))

=
∑

(u,u′)∈Xs(f,gh)

f(u)λ(u)
( ∑

(v,w)∈Xu′ (g,h)

g(v)λ(v)(h(w))
)

=
∑

(u,u′)∈Xs(f,gh)

f(u)
( ∑

(v,w)∈Xu′ (g,h)

λ(u)(g(v))λ(u)(λ(v)(h(w)))
)

=
∑

(u,u′)∈Xs(f,gh)

f(u)
( ∑

(v,w)∈Xu′ (g,h)

λ(u)(g(v))λ(u + v)(h(w))
)
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=
∑

(u,u′)∈Xs(f,gh)

f(u)
( ∑

(v,w)∈Xu′ (g,h)

λ(u)(g(v))λ(u + v)(h(w))
)

+
∑

(u,v,w)∈X

f(u)λ(u)(g(v))λ(u + v)(h(w))

=
∑

(u,v,w)∈Xs(f,g,h)

f(u)λ(u)(g(v))λ(u + v)(h(w)),

where X = {(u, v, w)|(u, v, w) ∈ Xs(f, g, h), (gh)(v + w) = 0}. On the other hand,

((fg)h)(s) =
∑

(w′,w)∈Xs(fg,h)

(fg)(w′)λ(w′)(h(w))

=
∑

(w′,w)∈Xs(fg,h)

( ∑
(u,v)∈Xw′ (f,g)

f(u)λ(u)(g(v))
)

λ(w′)(h(w))

=
∑

(w′,w)∈Xs(fg,h)

∑
(u,v)∈Xw′ (f,g)

f(u)λ(u)(g(v))λ(u + v)(h(w))

=
∑

(u,v,w)∈Xs(f,g,h)

f(u)λ(u)(g(v))λ(u + v)(h(w)).

Thus (fg)h = f(gh). Now, with pointwise addition, and the multiplication as above, it is easy
to see that ([[RS,≤]], +, ·) becomes a ring, which we denote by [[RS,≤, λ]], and call the twisted
generalized power series ring related to λ. The elements of [[RS,≤, λ]] are called generalized
power series with coefficients in R and exponents in S.

Example 2.2 1 If λ(s) = 1, the identity map of R, for every s ∈ S, then [[RS,≤, λ]] = [[RS,≤]]
is the ring of generalized power series in the sense of Ribenboim [1, 2]. Thus, the following rings
are twisted generalized power series rings: the monoid ring R[S] of S with coefficients in R; the
group ring R[G] of Abelian group G with coefficients in R; the ring R[[x1, . . . , xn]] of formal
power series in n indeterminates and coefficients in R; Laurent series ring R[[x, x−1]]; the ring
[[RN≥1,≤]] of arithmetical functions with values in R, endowed with the Dirichlet convolution:

(fg)(n) =
∑
d|n

f(d)g(n/d), for each n ≥ 1,

where ≤ is the usual order of N. Further work on the rings of generalized power series appears
in [1, 2, 9, 10, 11].

2 Let α be a ring endomorphism of R. Let S = N ∪ {0} be endowed with the usual order,
and define λ : S −→ R End(R) via λ(0) = 1, the identity map of R, and λ(k) = αk for any
k ∈ N. Then [[RS,≤, λ]] = R[[x; α]], the usual skew power series rings.

3 Let α be a ring automorphism of R. Let S = Z be endowed with the usual order, and
define λ : S −→ R End(R) via λ(s) = αs. Then [[RS,≤, λ]] = R[[x, x−1; α]], the usual skew
Laurent series rings.

4 Let R be a ring and let G be an Abelian group acting on R as a group of automorphisms.
Define λ : G −→ R End(R) via λ(s) = s for any s ∈ G. Let ≤ be the trivial order of G. Then
it is easy to see that [[RG,≤, λ]] = R ∗ G, the skew group ring of G with coefficients in R. If
G is an infinite cyclic group generated by σ where σ acts on R as a ring automorphism, then
[[RG,≤, λ]] is isomorphic to the skew Laurent polynomial ring R[x, x−1; σ].

5 Let R be a ring and α a ring homomorphism of R. Set S = N ∪ {0} endowed with the
trivial order. Define λ : S −→ R End(R) via λ(0) = 1, the identity map of R, and λ(s) = αs

for any s ∈ N. Then [[RS,≤, λ]] ∼= R[x; α], the usual skew polynomial ring.
6 Let R be the complex field and 0 �= q ∈ R. Let α be the R-automorphism on R[x]

determined by α(x) = qx. Define λ : N ∪ {0} −→ R End(R[x]) via λ(0) = 1, the identity
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map of R[x], and λ(k) = αk for any k ∈ N. Let ≤ be the trivial order over N ∪ {0}. Then
[[(R[x])N∪{0},≤, λ]] ∼= R[x][y; α], the quantum plane [4, 12].

7 Let F be a field. Let α be the F -automorphism of F [x] sending x to x − 1. Define
λ : N ∪ {0} −→ R End(F [x]) via λ(0) = 1, the identity map of F [x], and λ(k) = αk for any
k ∈ N. Let ≤ be the trivial order over N ∪ {0}. If V is the binary space Fe1 ⊕ Fe2 with a Lie
algebra structure given by the Lie product [e1, e2] = e2, then [[(F [x])N∪{0},≤, λ]] ∼= F [x][y; α],
the universal enveloping algebra U of (V, [, ]).

8 Let α and β be ring endomorphisms (respectively, ring automorphisms) of R such that
αβ = βα. Let S = (N ∪ {0}) × (N ∪ {0}) (resp. Z × Z) endowed with the lexicographic
order, or the reverse lexicographic order, or the product order of the usual order of N ∪ {0}
(resp. Z), and define λ : S −→ R End(R) via λ(m, n) = αmβn for any m, n ∈ N ∪ {0}
(resp. m, n ∈ Z). Then [[RS,≤, λ]] = R[[x, y; α, β]] (resp. R[[x, y, x−1, y−1; α, β]]), in which
(axmyn)(bxpyq) = aαmβn(b)xm+pyn+q for any m, n, p, q ∈ N ∪ {0} (resp. m, n, p, q ∈ Z).

3 Triangulating Dimensions
Let α be a ring endomorphism of R. According to [13] or [14], α is called a rigid endomorphism
if rα(r) = 0 implies r = 0 for r ∈ R. A ring R is said to be α-rigid if there exists a rigid
endomorphism α of R. Clearly any rigid endomorphism is a monomorphism and any α-rigid
ring is reduced. Generalizing these concepts, we give the following definition (see [15]).

Definition 3.1 Let α be a ring endomorphism of R. Then α is called a weakly rigid endo-
morphism if

(1) α is a monomorphism, and
(2) if a, b ∈ R are such that ab = 0 then aα(b) = α(a)b = 0.

Clearly, the identity map of R is weakly rigid. Every monomorphism of rings without
non-zero zero-divisors is weakly rigid.

Let α be a rigid endomorphism of R. It was shown in [13] that if ab = 0 then aαn(b) =
αn(a)b = 0 for any positive integer n. Thus any rigid endomorphism is weakly rigid. But the
converse is not true. For example, supposing that the ring R is not reduced, then the identity
map of R is weakly rigid but not rigid. In fact, if α is a ring endomorphism of R, then, by [14,
Proposition 3], α is rigid if and only if α is weakly rigid and R is reduced. Further examples of
weakly rigid endomorphisms of rings can be found in [15].

We say λ : S −→ R End(R) is weakly rigid if for every s ∈ S, λ(s) is a weakly rigid
endomorphism of R. For example, if α is a weakly rigid endomorphism of R, then λ : N∪{0} −→
R End(R): λ(0) = 1, λ(k) = αk for any k ∈ N is weakly rigid.

Lemma 3.2 Let λ be weakly rigid. Then
(1) λ(0) = 1, and
(2) for any s ∈ S and any b2 = b ∈ R, λ(s)(b) = b.

Proof Clearly λ(0) = λ(0)λ(0). Thus λ(0) = 1 since λ(0) is a monomorphism.
Let b2 = b ∈ R. Then b(1−b) = 0. Thus λ(s)(b)(1−b) = 0 since λ(s) is weakly rigid. Hence

λ(s)(b) = λ(s)(b)b. On the other hand, λ(s)(b) = λ(s)(b)λ(s)(b), thus (1 − λ(s)(b))λ(s)(b) = 0.
So λ(s)(1−λ(s)(b))λ(s)(b) = 0 since λ(s) is weakly rigid, which implies that (1−λ(s)(b))b = 0
since λ(s) is a monomorphism. Hence b = λ(s)(b)b. Now it follows that λ(s)(b) = b.

We shall henceforth assume that λ : S −→ R End(R) is weakly rigid and satisfies the
condition that λ(u + v) = λ(u)λ(v) for any u, v ∈ S.

Recall from [3, 5, 6] that an ordered set {b1, . . . , bn} of nonzero distinct idempotents in a
ring R is called a set of left triangulating idempotents of R if all the following hold:

(i) 1 = b1 + · · · + bn;
(ii) b1 ∈ Sl(R); and
(iii) bk+1 ∈ Sl(akRak), where ak = 1 − (b1 + · · · + bk), for 1 ≤ k ≤ n − 1.
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Similarly we can define a set of right triangulating idempotents of R using (i), b1 ∈ Sr(R),
and bk+1 ∈ Sr(akRak).

Let B be a set of left triangulating idempotents of R and Γ a ring extension of R. From
[7], we say Γ is B-triangularly linked to R if whenever b ∈ B and 0 �= a ∈ Sl(bΓb), then there
exists 0 �= a0 ∈ Sl(bRb) such that a0Γ ⊆ aΓ. We say Γ is B-triangularly compatible with R if
B is a set of left triangulating idempotents of Γ.

Let r ∈ R. Define a mapping cr ∈ [[RS,≤, λ]] as follows:
cr(0) = r, cr(s) = 0, 0 �= s ∈ S.

Then {cr|r ∈ R} is isomorphic to a subring of [[RS,≤, λ]] by Lemma 3.2.
Lemma 3.3 Let (S,≤) be a strictly ordered monoid. If B = {b1, . . . , bn} is a set of left
triangulating idempotents of R, then {cb1 , . . . , cbn

} is a set of left triangulating idempotents of
[[RS,≤, λ]].
Proof From Lemma 3.2, it is easy to see that cb is an idempotent of [[RS,≤, λ]] for any b ∈ B.
Since 1 = b1 + · · · + bn, it is easy to see that c1 = cb1 + · · · + cbn

. For any s ∈ S and
any r ∈ R, (r − b1r)λ(s)(b1) = 0 since (r − b1r)b1 = 0 and λ(s) is weakly rigid. Thus for
any f ∈ [[RS,≤, λ]] and any s ∈ S, (cb1fcb1)(s) =

∑
(u,v,w)∈Xs(cb1 ,f,cb1 ) cb1(u)λ(u)(f(v))λ(u +

v)(cb1(w)) = b1λ(0)(f(s))λ(s)(b1) = b1f(s)λ(s)(b1) = f(s)λ(s)(b1) =
∑

(u,v)∈Xs(f,cb1 ) f(u)λ(u)
(cb1(v)) = (fcb1)(s). Thus cb1fcb1 = fcb1 . This means that cb1 ∈ Sl([[RS,≤, λ]]). Note bk+1 ∈
Sl(akRak), where ak = 1− (b1 + · · ·+ bk), for 1 ≤ k ≤ n− 1. Thus (akr− bk+1akr)akbk+1 = 0,
and so (akr − bk+1akr)λ(s)(akbk+1) = 0 since λ(s) is weakly rigid. It is easy to see that
cak

= c1− (cb1 + · · ·+cbk
). Thus for any f ∈ [[RS,≤, λ]] and any s ∈ S, (cbk+1cak

fcak
cbk+1)(s) =∑

(u,v,w,p,q) cbk+1(u)λ(u)(cak
(v))λ(u+v)(f(w))λ(u+v+w)(cak

(p))λ(u+v+w +p)(cbk+1(q)) =
bk+1akf(s)λ(s)(akbk+1) = akf(s)λ(s)(akbk+1) = (cak

fcak
cbk+1)(s). So cbk+1cak

fcak
cbk+1 = cak

fcak
cbk+1 . This means that cbk+1 ∈ Sl(cak

[[RS,≤, λ]]cak
). Now the result follows.

Recall that a monoid S is called torsion-free if the following property holds: If s, t ∈ S, if
k is an integer, k ≥ 1 and ks = kt, then s = t. If (S,≤) is a strictly totally ordered monoid,
then by [1, 3.2], S is cancellative and torsion-free. It was proved in [16, Lemma 3] that if
(S,≤) is a strictly totally ordered monoid satisfying that 0 ≤ s for all s ∈ S and if φ is a
left semicentral idempotent of [[RS,≤]], then φ(0) ∈ R is a left semicentral idempotent and
φ[[RS,≤]] = cφ(0)[[RS,≤]]. Here we have
Lemma 3.4 Let R be a ring and S a cancellative and torsion-free monoid and ≤ a strict
order on S satisfying that 0 ≤ s for all s ∈ S. If φ ∈ [[RS,≤, λ]] is a left semicentral idempotent,
then φ(0) ∈ R is a left semicentral idempotent and φ[[RS,≤, λ]] = cφ(0)[[RS,≤, λ]].
Proof For any r ∈ R, crφ = φcrφ. Thus by Lemma 3.2,

rφ(0) = rλ(0)(φ(0)) = (crφ)(0) = (φcrφ)(0) = φ(0)λ(0)(rφ(0)) = φ(0)rφ(0),
which implies that φ(0) is a left semicentral idempotent of R.

If φ(0) = 0, then φ = 0. Otherwise, suppose that φ �= 0. Then supp(φ) �= ∅. By
[1], there exists a compatible strict total order ≤′ on S, which is finer than ≤ (that is,
for all s, t ∈ S, s ≤ t implies s ≤′ t). Since supp(φ) is a non-empty artinian and nar-
row subset of S, the set Min(supp(φ)) of minimal elements of supp(φ) is finite and non-
empty. Let Min(supp(φ)) = {s1, s2, . . . , sn} with s1 <′ si for every i = 2, . . . , n. Then
0 �= φ(s1) = φ2(s1) =

∑
(u,v)∈Xs1 (φ,φ) φ(u)λ(u)(φ(v)) = 0, a contradiction. This shows that

φ = 0. Thus φ[[RS,≤, λ]] = cφ(0)[[RS,≤, λ]]. Now suppose that φ(0) �= 0. If supp(φ) = {0}, then
clearly φ = cφ(0). So suppose that supp(φ) �= {0}.

Denote the minimal element under the order ≤′ of supp(φ) − {0} by t. Then rφ(t) =
rλ(0)(φ(t)) = (crφ)(t) = (φcrφ)(t) =

∑
(u,v)∈Xt(φ,φ) φ(u)λ(u)(rφ(v)) = φ(t)λ(t)(rφ(0)) +

φ(0)λ(0)(rφ(t)) = φ(t)λ(t)(rφ(0)) + φ(0)rφ(t) since φ(s) = 0 for any s ∈ S with 0 <′ s <′ t.
Multiply the right-hand side by φ(0) to get rφ(t)φ(0) = φ(t)λ(t)(rφ(0))φ(0)+φ(0)rφ(t)φ(0). But
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φ(0)rφ(t)φ(0) = rφ(t)φ(0). Hence φ(t)λ(t)(rφ(0))φ(0) = 0, and rφ(t) = φ(0)rφ(t). From the
weak rigidness of λ(t), it follows that λ(t)(φ(t))λ(t)(rφ(0))λ(t)(φ(0)) = 0. Thus φ(t)rφ(0) = 0
by the weak rigidness of λ(t) again.

By analogy with the proof of [16, Lemma 3], bearing in mind that λ is weakly rigid, we get
that for any 0 <′ w ∈ supp(φ),

rφ(w) = φ(0)rφ(w), φ(w)rφ(0) = 0, ∀ r ∈ R.

Thus for any 0 <′ w ∈ supp(φ), φ(w)λ(w)(φ(0)) = 0 since λ(w) is weakly rigid. Now it is easy
to see that cφ(0) = φcφ(0) and φ = cφ(0)φ, which imply that φ[[RS,≤, λ]] = cφ(0)[[RS,≤, λ]].

Lemma 3.5 Let R be a ring and S a cancellative and torsion-free monoid and ≤ a strict
order on S satisfying that 0 ≤ s for all s ∈ S. If B is a set of left triangulating idempotents of
R, then [[RS,≤, λ]] is B-triangularly linked to R.

Proof Suppose that b ∈ B and 0 �= φ ∈ Sl(cb[[RS,≤, λ]]cb). For every f ∈ [[RS,≤, λ]], it is
easy to see that (cbfcb)(s) = bf(s)λ(s)(b) = bf(s)b ∈ bRb for any s ∈ S by Lemma 3.2. Thus
cbfcb ∈ [[(bRb)S,≤, λ]]. Conversely if g ∈ [[(bRb)S,≤, λ]], then clearly g = cbgcb ∈ cb[[RS,≤, λ]]cb.
Thus cb[[RS,≤, λ]]cb = [[(bRb)S,≤, λ]]. Now from Lemma 3.4, there exists 0 �= a ∈ Sl(bRb) such
that ca[[(bRb)S,≤, λ]] ⊆ φ[[(bRb)S,≤, λ]]. Thus ca = φca and so ca[[RS,≤, λ]] ⊆ φ[[RS,≤, λ]].

Lemma 3.6 Let S be cancellative and torsion-free and R a reduced ring. If f, g ∈ [[RS,≤, λ]]
are such that fg = 0, then f(u)g(v) = 0 for any u ∈ supp(f) and any v ∈ supp(g).

Proof By analogy with the proof of [17, Lemma 3.1], we can complete the proof.

Lemma 3.7 Let S be cancellative and torsion-free and R a reduced ring. If φ ∈ [[RS,≤, λ]]
is an idempotent, then there exists an idempotent e ∈ R such that φ = ce.

Proof From φ(c1 − φ) = 0 it follows that φ(u)(c1 − φ)(v) = 0 for any u ∈ supp(φ) and
v ∈ supp(c1 − φ). If 0 �= s ∈ supp(φ), then φ(s)2 = 0, and so φ(s) = 0 since R is reduced, a
contradiction. Thus supp(φ) ⊆ {0}. Hence φ = cφ(0). From φ(0)(1 − φ(0)) = 0 it follows that
φ(0) ∈ R is an idempotent.

The following lemma shows that if R is reduced, then the condition that 0 ≤ s for all s ∈ S
in Lemma 3.5 can be omitted.

Lemma 3.8 Let R be a reduced ring and S a cancellative and torsion-free monoid and ≤
a strict order on S. If B is a set of left triangulating idempotents of R, then [[RS,≤, λ]] is
B-triangularly linked to R.

Proof Note that every reduced ring is Abelian. The result follows by analogy with the proof
of Lemma 3.5, and by using Lemma 3.7.

A set {b1, . . . , bn} of left (right) triangulating idempotents is said to be complete if each bi

is also semicentral reduced. Note that any complete set of primitive idempotents determines a
complete set of left triangulating idempotents [5, Proposition 2.18].

Lemma 3.9 ([5, Proposition 1.3]) R has a (respectively, complete) set of left triangulat-
ing idempotents if and only if R has a (respectively, complete) generalized triangular matrix
representation.

From [5] the number of elements in a complete set of left triangulating idempotents is unique
for a given ring R (which has such a set) and this is also the number of elements in any complete
set of right triangulating idempotents of R. Thus it is natural to see that R has triangulating
dimension n, written as Tdim(R) = n, if R has a complete set of left triangulating idempotents
with exactly n elements. If R has no complete set of left triangulating idempotents, then we say
R has infinite triangulating dimension, denoted as Tdim(R) = ∞. Note that R is semicentral
reduced if and only if Tdim(R) = 1.

Lemma 3.10 ([7, Proposition 4.3]) Let Γ be a ring extension of R. If Γ is B-triangularly
linked to R and B-triangularly compatible with R for every set B of left triangulating idempo-



Triangular Matrix Representations 995

tents of R, then Tdim(R) =Tdim(Γ).
Theorem 3.11 Let R be a ring and S a cancellative and torsion-free monoid and ≤ a strict
order on S. If one of the following conditions holds, then [[RS,≤, λ]] has the same triangulating
dimension as R :

(1) 0 ≤ s for all s ∈ S.
(2) R is reduced.

Proof This follows from Lemmas 3.3, 3.5, 3.8, 3.10.
If M is a right R-module, we let [MS,≤] be the set of all maps φ : S −→ M such that the set

supp(φ) = {s ∈ S|φ(s) �= 0} is finite. Now [MS,≤] can be turned into a right [[RS,≤]]-module
under some additional conditions. The addition in [MS,≤] is componentwise and the scalar
multiplication is defined as follows

(φf)(s) =
∑
t∈S

φ(s + t)f(t), for every s ∈ S,

where f ∈ [[RS,≤]], and φ ∈ [MS,≤]. Since the set supp(φ) is finite, this multiplication is well-
defined. If (S,≤) is a strictly totally ordered monoid which is also artinian, then, from [18],
[MS,≤] becomes a right [[RS,≤]]-module, which is called the generalized Macaulay–Northcott
module. For example, if S = N ∪ {0} and ≤ is the usual order, then [MN∪{0},≤] ∼= M [x−1],
the usual right R[[x]]-module which is called the Macaulay–Northcott module in [19]. Further
work on generalized Macaulay–Northcott modules appears in [20, 21].

The following result appears in [6, Corollary 1.11].
Lemma 3.12 Let M be a right R-module and E = EndR(M). The following conditions are
equivalent :

(i) E has a complete generalized triangular matrix representation ;
(ii) M has ACC and DCC on fully invariant direct summands ;
(iii) M has only finitely many distinct fully invariant direct summands.

Corollary 3.13 Let S be a cancellative and torsion-free monoid and ≤ a strict order on S
which is also artinian. If the right R-module M has only finitely many distinct fully invariant
direct summands, then the ring End[[RS,≤]]([MS,≤]) has a complete generalized triangular matrix
representation.
Proof It follows from [21, Theorem 2.1] that there exists an isomorphism of rings

End[[RS,≤]]([M
S,≤]) ∼= [[EndR(M)S,≤]].

If s < 0, then · · · < 3s < 2s < s < 0, a contradiction. Thus (S,≤) satisfies the condition that
0 ≤ s for every s ∈ S. Now the result follows from Theorem 3.11 and Lemma 3.12.

4 PWP Rings

Recall that R is (quasi-) Baer if the right annihilator of every nonempty subset (every right
ideal) of R is generated by an idempotent. Clark defined quasi-Baer rings in [22] and used
them to characterize when a finite dimensional algebra with unity over an algebraically closed
field is isomorphic to a twisted matrix units semigroup algebra. Every prime ring is quasi-Baer.
In [23] Pollingher and Zaks showed that the class of quasi-Baer rings is closed under n × n
matrix rings and under n × n upper (or lower) triangular matrix rings. Birkenmeier, Kim and
Park proved in [4, Theorem 1.8] that a ring R is quasi-Baer if and only if R[X] is quasi-Baer
if and only if R[[X]] is quasi-Baer, where X is an arbitrary nonempty set of not necessarily
commuting indeterminates. Hong, Kim and Kwak showed in [13, Corollary 22] that if α is a
rigid endomorphism of R, then R is a quasi-Baer ring if and only if R[[x; α]] is a quasi-Baer
ring. Further work on quasi-Baer rings appears in [7, 13, 15, 16].
Lemma 4.1 Let R be a ring and S a cancellative and torsion-free monoid and ≤ a strict
order on S. If R is quasi-Baer, then [[RS,≤, λ]] is quasi-Baer.
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Proof Let Q be a right ideal of [[RS,≤, λ]]. Since S is cancellative and torsion-free, by [1], there
exists a compatible strict total order ≤′ on S, which is finer than ≤ (that is, for all s, t ∈ S,
s ≤ t implies s ≤′ t). For every 0 �= f ∈ [[RS,≤, λ]], since supp(f) is a non-empty artinian
and narrow subset of S, the set Min(supp(f)) of minimal elements of supp(f) is finite and
non-empty. Thus there exists a minimal element of supp(f) under the total order ≤′, which
will be denoted by π′(f).

For every s ∈ S, set Is = {f(s)|f ∈ Q, π′(f) = s}, and I = ∪s∈SIs. Let J be the right ideal
of R generated by I. Then there exists an idempotent e of R such that rR(J) = eR. We will
show that r[[RS,≤,λ]](Q) = ce[[RS,≤, λ]].

Suppose that f ∈ Q. Then fce ∈ Q. If fce �= 0, then set π′(fce) = t. Then (fce)(t) �= 0.
On the other hand, f(t)λ(t)(e) =

∑
(u,v)∈Xt(f,ce) f(u)λ(u)(ce(v)) = (fce)(t) ∈ It ⊆ J, thus

f(t)λ(t)(e)e = 0. Hence, by Lemma 3.2, f(t)λ(t)(e) = 0, a contradiction. Hence fce = 0. This
means that ce[[RS,≤, λ]] ⊆ r[[RS,≤,λ]](Q).

Suppose that g ∈ r[[RS,≤,λ]](Q) and g �= 0. Set π′(g) = s. For any a ∈ J , there exist
s1, . . . , sn ∈ S, f1, · · · , fn ∈ Q, and r1, . . . , rn ∈ R, such that a = f1(s1)r1 + · · ·+ fn(sn)rn, and
π′(fi) = si, fi(si) ∈ Isi

, i = 1, . . . , n. Clearly we can assume that fi(si)ri �= 0, i = 1, . . . , n.
Thus (ficri

)(si) = fi(si)λ(si)(ri) �= 0 since λ(si) is weakly rigid. For any t <′ si, if (ficri
)(t) =

fi(t)λ(t)(ri) �= 0, then fi(t)ri �= 0 since λ(t) is weakly rigid. Thus fi(t) �= 0, a contradiction
with π′(fi) = si. Hence π′(ficri

) = si. Since ficri
∈ Q, we have (ficri

)g = 0. Thus

0 = (ficri
g)(si + s) =

∑
(u,v)∈Xsi+s(ficri

,g)

(ficri
)(u)λ(u)(g(v)).

Since si and s are the minimal elements of supp(ficri
) and supp(g), respectively, under the

total order ≤′, if u ∈ supp(ficri
) and v ∈ supp(g) are such that u + v = si + s, then si ≤′ u

and s ≤′ v. If si <′ u then si + s <′ u + v = si + s, a contradiction. Thus u = si. Similarly,
v = s. Hence

0 =
∑

(u,v)∈Xsi+s(ficri
,g)

(ficri
)(u)λ(u)(g(v)) = (ficri

)(si)λ(si)(g(s)).

So λ(si)((ficri
)(si)(g(s))) = 0. Thus (ficri

)(si)g(s) = 0. Hence ag(s) = 0. This implies that
g(s) ∈ rR(J) = eR. Therefore g(s) = eg(s).

We claim that for any u ∈ supp(g), g(u) = eg(u).
Suppose that u ∈ supp(g). Assume that g(v) = eg(v) for any v ∈ supp(g) with v <′ u. We

will show that g(u) = eg(u). Denote

gu(x) =
{

g(x), x <′ u,

0, u ≤′ x.

Then π′(g − gu) = u. By hypothesis it is easy to see that gu = cegu ∈ ce[[RS,≤, λ]] ≤
r[[RS,≤,λ]](Q). Thus g − gu ∈ r[[RS,≤,λ]](Q). By analogy with the proof above, it follows that
(g − gu)(u) = e(g − gu)(u), which implies that g(u) = eg(u). Thus our claim holds.

Now from (ceg)(t) =
∑

(u,v)∈Xt(ce,g) ce(u)λ(u)(g(v)) = ce(0)λ(0)(g(t)) = eg(t) = g(t) it
follows that g = ceg ∈ ce[[RS,≤, λ]]. Therefore r[[RS,≤,λ]](Q) = ce[[RS,≤, λ]], and so [[RS,≤, λ]] is
quasi-Baer.
Theorem 4.2 Let R be a PWP ring and S a cancellative and torsion-free monoid and ≤ a
strict order on S. If one of the following conditions holds, then [[RS,≤, λ]] is a PWP ring :

(i) 0 ≤ s for all s ∈ S.
(ii) R is reduced.

Proof This follows from Lemma 4.1 and Theorem 3.11.
Note that there exists a PWP ring which is not reduced. For example, the ring

(
Z Z
0 Z

)
,

where Z is the ring of integers, is a PWP ring, but not reduced. Note that a PWP reduced ring
is a finite direct sum of domains.
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Corollary 4.3 Let (S,≤) be a strictly totally ordered monoid and R a PWP ring. If either
0 ≤ s for all s ∈ S, or R is reduced, then [[RS,≤, λ]] is a PWP ring.

Proof If ≤ is a strict total order on S, then, by [2, 3.2], S is cancellative and torsion-free.
Thus the result follows from Theorem 4.2.

The following corollaries will give other examples of PWP rings.

Corollary 4.4 Let (S1,≤1), . . . , (Sn,≤n) be strictly totally ordered monoids and R a PWP
ring. Denote by (lex ≤) and (revlex ≤) the lexicographic order, the reverse lexicographic
order, respectively, on the monoid S1 × · · · × Sn. If either every (Si,≤i) satisfies the condition
that 0 ≤i s for every s ∈ Si, i = 1, . . . , n, or R is reduced, then [[RS1×···×Sn,(lex≤), λ]] and
[[RS1×···×Sn,(revlex≤), λ]] are PWP rings.

Proof It is easy to see that (S1 × · · · × Sn, (lex ≤)) is a strictly totally ordered monoid which
also satisfies the following condition:

0(lex ≤)(s1, . . . , sn), ∀ (s1, . . . , sn) ∈ (S1 × · · · × Sn, (lex ≤))

if every (Si,≤i) satisfies the condition that 0 ≤i s for every s ∈ Si, i = 1, . . . , n. Thus by
Corollary 4.3, [[RS1×···×Sn,(lex≤), λ]] is a PWP ring.

The proof for ring [[RS1×···×Sn,(revlex≤), λ]] is similar.

Corollary 4.5 Let R be a PWP ring. Then so is the ring [[RN≥1,≤]].

Any submonoid of the additive monoid N ∪ {0} is called a numerical monoid. We have

Corollary 4.6 Let S be a numerical monoid and ≤ the usual natural order of N∪{0}. Then
[[RS,≤]] has the same triangulating dimension as R. Furthermore if R is a PWP ring, then so
is [[RS,≤]].

Corollary 4.7 Let S be a submonoid of (N∪{0})n (n ≥ 2), endowed with the order ≤ induced
by the product order, or lexicographic order or reverse lexicographic order. If R is a PWP ring,
then so is [[RS,≤]].

Proof Since S is a torsion-free and cancellative monoid, the result follows from Theorem 4.2.

Corollary 4.8 Suppose that (S,≤) is a strictly totally ordered monoid which is also ar-
tinian. Let M be a right R-module and E = EndR(M). If E is a PWP ring, then so is
End[[RS,≤]]([MS,≤]).

Proof This follows from Theorem 4.2 and from the proof of Corollary 3.13.
Note that the maps λ in Examples 2.2(6) and 2.2(7) are weakly rigid. Thus the quan-

tum plane R[x][y; α] in Example 2.2(6) and the universal enveloping algebra U of (V, [, ]) in
Example 2.2(7) are PWP rings.

Let R be a PWP ring with a complete set of left triangulating idempotents B = {b1, . . . , bn}.
In [7, Theorem 4.8], it was shown that if α is a ring automorphism such that α(bR) ⊆ bR for
all b ∈ B, then R[x; α] and R[[x; α]] are PWP rings. Here we have

Corollary 4.9 Let R be a PWP ring and α a weakly rigid endomorphism of R. Then R[x; α]
and R[[x; α]] are PWP rings.

In [7, Theorem 4.8], it was shown that if R is a PWP ring, then R[x, x−1] and R[[x, x−1]]
are PWP rings. Here we have

Corollary 4.10 Let R be a reduced PWP ring and α a weakly rigid automorphism of R.
Then R[x, x−1; α] and R[[x, x−1; α]] are PWP rings.

Corollary 4.11 Let R be a reduced PWP ring and α and β be weakly rigid ring endomor-
phisms (respectively, ring automorphisms) of R such that αβ = βα. Then R[[x, y; α, β]] (resp.
R[[x, y, x−1, y−1; α, β]]) is a PWP ring.

Remark 4.12 Let (S,≤) be a strictly totally ordered monoid which is also artinian. Then
the set Xs = {(u, v)|u+v = s, u, v ∈ S} is finite for any s ∈ S. Let V be a free Abelian additive
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group with the base consisting of elements of S. It was noted in [21] that V is a coalgebra over
Z with the comultiplication map and the counit map as follows:

Δ(s) =
∑

(u,v)∈Xs

u ⊗ v, ε(s) =
{

1, s = 0,

0, s �= 0,

and [[RS,≤]] ∼= Hom(V, R), the dual algebra with multiplication
f ∗ g = (f ⊗ g)Δ ∀ f, g ∈ Hom(V, R).

If R is a PWP ring, then from Theorem 4.2 we know that the ring Hom(V, R) is a PWP ring.
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