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1 Introduction
Throughout this paper all rings are considered to be commutative with identity and all modules
are unitary.

Let M be an R-module. A proper submodule N of M is said to be a prime submodule of
M, if the condition ra ∈ N, r ∈ R and a ∈ M. implies that a ∈ N or rM ⊆ N.

Recall that (N : M) = {r ∈ R| rM ⊆ N}. If N is a prime submodule of M and P = (N :
M), we say that N is a P -prime submodule of M. It is easy to see that P is a prime ideal of R
(see, for example, [1], or [2]).

A prime submodule N of a module M is called a minimal prime submodule over a submodule
K of M, if K ⊆ N and there does not exist a prime submodule L of M such that K ⊆ L ⊂ N.

If n is a non-negative integer, and for each integer i, 0 ≤ i ≤ n, Ni is a prime (or P -prime)
submodule of M, then the chain

Nn ⊂ · · · ⊂ N2 ⊂ N1 ⊂ N0

is called a chain of prime (P -prime) submodules of length n. Also if N is a prime submodule
of M then by the height (or P -height) of N, which is denoted by ht N, (or htP N,) we mean
the height of a chain of prime (P -prime) submodules of M, such as above, for which N0 = N
such that there does not exist a chain of greater length with this property.

It is said that the principal ideal theorem (PIT) holds for M , if for every prime submodule
N of M minimal over a cyclic submodule, ht N ≤ 1.

We say that the generalized principal ideal theorem (GPIT) holds for M , if for every positive
integer n and every prime submodule N of M minimal over a submodule generated by n
elements, ht N ≤ n.

2 Some Remarks on Prime Submodules
Lemma 2.1 Let M be an R-module, N a submodule of M and S a multiplicatively closed
subset of R.

i) If N is a P -prime submodule of M such that P ∩ S = ∅, then S−1N is an S−1P -prime
submodule of S−1M as an S−1R-module, and (S−1N) ∩ M = N.

ii) If T is a Q-prime submodule of S−1M as an S−1R-module, then T ∩M is a Q∩R-prime
submodule of M, S−1(T ∩ M) = T, and (Q ∩ R) ∩ S = ∅.
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Proof See [3, Proposition 1].
Corollary 2.2 If N is a prime submodule of an R-module M such that (N : M) ∩ S = ∅,
then ht N = ht S−1N .
Proof The proof is straightforward by Lemma 2.1.
Lemma 2.3 A proper submodule N of an R-module M is a prime submodule of M if and
only if for every r ∈ R, the natural homomorphism fr : M

N → M
N , fr(m + N) = rm + N, is

one-to-one or zero.
Proof The proof is easy (see [4, p. 273]).
Theorem 2.4 Let F be a flat R-module and N a prime submodule of an R-module M. If
F ⊗ N is a proper submodule of F ⊗ M, then F ⊗ N is a prime submodule of F ⊗ M.

Proof Since F is a flat R-module, then F ⊗ M
N

∼= F⊗M
F⊗N . Let r ∈ R and the natural homomor-

phism fr : M
N → M

N , fr(m + N) = rm + N, be zero. We, obviously, observe that the natural
homomorphism gr : F ⊗ M

N → F ⊗ M
N defined by gr(f ⊗(m+N)) = f ⊗(rm+N), is zero. Thus,

the natural homomorphism hr : F⊗M
F⊗N → F⊗M

F⊗N , given by hr((f⊗m)+F⊗N) = r(f⊗m)+F⊗N,
is zero.

When the homomorphism fr : M
N → M

N is a monomorphism, then since F is a flat R-module,
the homomorphism gr : F ⊗ M

N → F ⊗ M
N is a monomorphism. Thus the homomorphism

hr : F⊗M
F⊗N → F⊗M

F⊗N is a monomorphism. Hence by Lemma 2.3, F ⊗ N is a prime submodule of
F ⊗ M.

Proposition 2.5 Let F be a faithfully flat R-module and N a submodule of an R-module M.
Then N is a prime submodule of M, if and only if F ⊗ N is a prime submodule of F ⊗ M.

Proof Let N be a prime submodule of M and F ⊗ N = F ⊗ M. Therefore, 0 −→ F ⊗ N −→
F ⊗M −→ 0 is an exact sequence, and since F is a faithfully flat R-module, then 0 −→ N −→
M −→ 0 is an exact sequence. Hence, N = M, which is absurd. So F ⊗ N �= F ⊗ M. Now, by
Theorem 2.4, F ⊗ N is a prime submodule of F ⊗ M.

Conversely, suppose that F ⊗N is a prime submodule of F ⊗M. We have, F ⊗N �= F ⊗M
and, obviously, N �= M. Since F is a flat R-module, F ⊗ M

N
∼= F⊗M

F⊗N . By Lemma 2.3, the natural
homomorphism hr : F⊗M

F⊗N → F⊗M
F⊗N , defined by hr((f ⊗ m) + F ⊗ N) = r(f ⊗ m) + F ⊗ N, is

one-to-one or zero. If hr : F⊗M
F⊗N → F⊗M

F⊗N is zero then the homomorphism gr : F ⊗ M
N → F ⊗ M

N ,

defined by gr(f ⊗ (m + N)) = f ⊗ (rm + N), is zero. If we consider fr : M
N → M

N , given by
fr(m + N) = rm + N, then 0 = gr(F ⊗ M

N ) = F ⊗ fr(M
N ). Now, since F is faithfully flat, then

fr(M
N ) = 0, that is fr = 0. If hr : F⊗M

F⊗N → F⊗M
F⊗N is a monomorphism, then gr : F ⊗ M

N → F ⊗ M
N

is a monomorphism and again, since F is faithfully flat, fr : M
N −→ M

N is a monomorphism.
Therefore, N is a prime submodule of M, by Lemma 2.3.
Corollary 2.6 i) Let F be a flat R-module and I a prime ideal of R. If IF �= F, then IF is
a prime submodule of F.

ii) If F is a faithfully flat R-module, and I is an ideal of R, then I is a prime ideal of R if
and only if IF is a prime submodule of F.

Proof Having that IF ∼= F ⊗ I, we put M = R. Now, the proof is clear by Theorem 2.4 and
Proposition 2.5.
Proposition 2.7 For a ring R the following statements are equivalent :

i) The PIT holds for every finitely generated R-module.
ii) For every prime ideal P of R, the PIT holds for any finitely generated R

P -module.
iii) For every prime ideal P of R, the GPIT holds for any finitely generated R

P -module.
iv) The GPIT holds for every finitely generated R-module.

Proof i) =⇒ ii) Let B be a cyclic submodule of a finitely generated R
P -module M and let N be
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a minimal prime submodule of M over B. It is obvious that N is a minimal prime submodule
over the cyclic submodule B of M as an R-module. So, ht N ≤ 1 as an R-submodule of M
and, obviously, ht N ≤ 1 as an R

P -submodule of M.

ii) =⇒ iii) Since R
P is an integral domain, the proof is completed by [5, Proposition 18].

iii) =⇒ iv) Let M be a finitely generated R-module, B be a submodule of M, which is
generated by n elements, and let N be a minimal prime submodule over B. If ht N > n, then
there exists a chain of prime submodules of M ,

Nn+1 ⊂ Nn ⊂ Nn−1 ⊂ · · · ⊂ N1 ⊂ N0 = N.

Let (Nn+1 : M) = P. One can easily check that N
Nn+1

is a minimal prime submodule over the

submodule B+Nn+1
Nn+1

, which is generated by n elements in the finitely generated R
P -module M

Nn+1
.

So, by iii), ht N
Nn+1

≤ n. Now by considering the chain Nn+1
Nn+1

⊂ Nn

Nn+1
⊂ Nn−1

Nn+1
⊂ · · · ⊂ N1

Nn+1
⊂

N
Nn+1

of prime submodules, we get a contradiction.
iv) =⇒ i) The proof is clear.

Lemma 2.8 If R is a Noetherian domain, then the PIT holds for every finitely generated
R-module if and only if R is a Dedekind domain.
Proof See [5, Theorem 13].
Proposition 2.9 i) Let R be a Noetherian ring. Then the GPIT holds for every finitely
generated R-module if and only if, for every prime ideal P of R, R

P is a Dedekind domain.
ii) If R is a ZPI-ring, or an almost multiplication ring, then the GPIT holds for every

finitely generated R-module.
Proof i) The proof follows from Proposition 2.7 and Lemma 2.8.

ii) If R is a ZPI-ring, R
P is a Dedekind domain for every prime ideal P of R (see [6, p. 205]).

Now the proof follows from part i). If R is an almost multiplication ring, then by Theorem 9.23
of [6], for every prime ideal P of R, RP is a ZPI-ring. The result follows from Lemma 2.1 and
Corollary 2.2.

Recall that, if R is an integral domain with the quotient field K, then the rank of an R-
module M, which is written as rank M or rankR M, is the maximal number of elements of M
linearly independent over R (see, [7, p. 84]). Indeed rank M is equal to the dimension (rank)
of the vector space KM over the field K; i.e., rank M = rankK KM (see, [8, Lemma 2.12]).

The following theorem is a generalization of Proposition 1, of [9]:
Theorem 2.10 Let R be an integral domain, M an R-module, B a submodule of M and let
N be a prime submodule of M minimal over B. If (N : M) = 0, then ht N = rank B.

Proof Let K be the quotient field of R. Since N is a prime submodule of M minimal over
B, and (N : M) = 0, then by Lemma 2.1, KN is a minimal prime submodule (subspace)
of the K-module (vector space) KM over the submodule (subspace) KB. It is easy to see
that in a vector space every proper subspace is prime, then since KB itself is prime, we have
KB = KN. So by Corollary 2.2, htR N = htK KN = htK KB. Again since in a vector space
every proper subspace is prime, then obviously htK KB = rankK KB. Also we know that
rankK KB = rankR B, thus ht N = rank B.

3 Prime Submodules in Free Modules

Lemma 3.1 Let M be an R-module, N a submodule of M, and (N : M) = P be a prime ideal
of R. Then N is a prime submodule of M if and only if M

N is a torsion-free R
P -module.

Proof The proof is clear (see [1, Theorem 1]).
Proposition 3.2 If R is a ring, P is a prime ideal of R, and F = ⊕i∈IR, then a proper
submodule N = ⊕i∈IJi, is a P -prime submodule of F if and only if, for each i ∈ I, Ji = P or
Ji = R.
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Proof Suppose that ∩i∈I Ji = L, where L is a prime ideal of R. It is easy to see that (N :
F ) = L. Since F

N = ⊕i∈IR
⊕i∈IJi

∼= ⊕i∈I
R
Ji

, then F
N is a torsion-free R

L -module if and only if, for each
i ∈ I, R

Ji
is a torsion-free R

L -module. This is equivalent to saying that Ji = L or Ji = R, for
each i ∈ I. Otherwise, if Ji �= L and Ji �= R, for some i ∈ I, then since L ⊂ Ji, let r ∈ Ji − L,
and t ∈ R − Ji. Now we have (r + L)(t + Ji) = rt + Ji = 0, r + L �= 0, and t + Ji �= 0.

Now let N be a P -prime submodule. By Lemma 3.1, F
N is a torsion-free R

P -module. So, by
the above paragraph for each i ∈ I, Ji = P or Ji = R.

Conversely, suppose that, for each i ∈ I, Ji = P or Ji = R. Since N is a proper submodule
of F, then for at least one i0 ∈ I, we have Ji0 �= R. This means that Ji0 = P, and therefore
(N : F ) = ∩i∈I Ji = P, which is a prime ideal of R. Since, for each i ∈ I, Ji = P or Ji = R,
then obviously, for each i ∈ I, R

Ji
is a torsion-free R

P -module and by the first paragraph F
N is a

torsion-free R
P -module. Thus by Lemma 3.1, N is a prime submodule of F.

Note A similar proof to that of Proposition 3.2, shows that:
If R is a ring, P is a prime ideal of R and F =

∏
i∈I R, then a proper submodule N =

∏
i∈I Ji

is a P -prime submodule of F if and only if for each i ∈ I, Ji = P or Ji = R.

If N1 and N2 are prime submodules of a module M such that N1 ⊂ N2 and there does
not exist any prime submodule of M strictly between N1 and N2, then we say that the chain
N1 ⊂ N2 is saturated .

Theorem 3.3 Let F be a free R-module of finite rank with a basis {x1, x2, . . . , xn} and P be
a prime ideal of R. Then :

i) For each integer k, 0 ≤ k ≤ n − 1, N(k, P ) =
∑k

i=1 Rxi +
∑n

i=k+1 Pxi, is a P -prime
submodule of F, and htP N(k, P ) = k,

ii) For each integer k, 1 ≤ k ≤ n − 1, the chain N(k − 1, P ) ⊂ N(k, P ) is saturated,
iii) If P1 ⊂ P2 is a chain of prime ideals of R, then for each integer k, 0 ≤ k ≤ n− 1, there

is no P2-prime submodule of F strictly between N(k, P1) and N(k, P2),
iv) If P1 ⊂ P2 is a saturated chain of prime ideals of R, such that P2 is a principal ideal of

R and ∩+∞
m=1P

m
2 = 0, then for each integer k, 0 ≤ k ≤ n − 1, the chain N(k, P1) ⊂ N(k, P2) is

saturated,
v) For each integer k, 0 ≤ k ≤ n − 1, ht N(k, P ) ≥ k + ht P.

Proof i) Put (⊕k
i=1R) ⊕ (⊕n

i=k+1P ) = Tk. Obviously, F ∼= R(n) = ⊕n
i=1R, and N(k, P ) ∼= Tk.

So, by Proposition 3.2, N(k, P ) is a P -prime submodule of F. Evidently, htP N(k, P ) = htP Tk.
It is easy to see that N1 ⊂ N2 ⊂ · · · ⊂ Nm ⊂ Tk is a chain of P -prime submodules of R(n) if and
only if N1

PR(n) ⊂ N2
PR(n) ⊂ · · · ⊂ Nm

PR(n) ⊂ Tk

PR(n) is a chain of prime submodules of R(n)

PR(n) as an R
P -

module. So, htP Tk = ht Tk

PR(n) . On the other hand, ( Tk

PR(n) : R(n)

PR(n) ) = (Tk:R(n))
P = 0. Therefore,

by Theorem 2.10, we have ht Tk

PR(n) = rankR
P

Tk

PR(n) . One can easily see that Tk

PR(n)
∼= ⊕k

i=1
R
P as

an R
P -module, hence rank R

P

Tk

PR(n) = k.

ii) Let Q be a prime submodule of F strictly between N(k− 1, P ) and N(k, P ). By part i),
N(k − 1, P ) and N(k, P ) are P -prime submodules of F, and since N(k − 1, P ) ⊂ Q ⊂ N(k, P ),
then P = (N(k − 1, P ) : F ) ⊆ (Q : F ) ⊆ (N(k, P ) : F ) = P. This shows that Q is a P -prime
submodule of F. So, the chain PF = N(0, P ) ⊂ N(1, P ) ⊂ · · · ⊂ N(k− 1, P ) ⊂ Q ⊂ N(k, P ) is
a chain of P -prime submodules of F. This is a contradiction, since, by part i), htP N(k, P ) = k.

iii) Let Q be a P2-prime submodule of F between N(k, P1) and N(k, P2). Without loss of
generality we can assume that F = R(n), N(k, P1) = (⊕k

i=1R) ⊕ (⊕n
i=k+1P1), and N(k, P2) =

(⊕k
i=1R) ⊕ (⊕n

i=k+1P2). Let x = (x1, x2, . . . , xk, pk+1, pk+2, . . . , pn) ∈ N(k, P2). Then for each
i, k + 1 ≤ i ≤ n, pi ∈ P2. We now show that x ∈ Q.

Obviously, y = (x1, x2, . . . , xk, 0, 0, . . . , 0) ∈ N(k, P1) ⊆ Q. Since (Q : F ) = P2, then P2F ⊆
Q, and hence z = (0, 0, . . . , 0, pk+1, pk+2, . . . , pn) = pk+1(0, 0, . . . , 0, 1, 0, . . . , 0)+pk+2(0, 0, . . . , 0,
1, 0, . . . , 0) + · · · + pn(0, 0, · · · , 0, 1) ∈ Q. Therefore, x = y + z ∈ Q.
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iv) Let Q be a prime submodule of F between N(k, P1) and N(k, P2). Since N(k, P1) ⊆
Q ⊆ N(k, P2), then P1 = (N(k, P1) : F ) ⊆ (Q : F ) ⊆ (N(k, P2) : F ) = P2. Hence (Q : F ) = P1

or (Q : F ) = P2.

If (Q : F ) = P2, then by part iii), we have Q = N(k, P2). Now let (Q : F ) = P1. Without
loss of generality we can assume that F = R(n), N(k, P1) = (⊕k

i=1R) ⊕ (⊕n
i=k+1P1), and

N(k, P2) = (⊕k
i=1R) ⊕ (⊕n

i=k+1P2). Suppose that x = (x1, x2, . . . , xn) ∈ Q. We show that
x ∈ N(k, P1). Indeed, we will show that, for each i, i ≥ k + 1, xi = 0.

Obviously, we have y = (x1, x2, . . . , xk, 0, 0, . . . , 0) ∈ N(k, P1) ⊆ Q and z = x − y =
(0, 0, . . . , 0, xk+1, xk+2, . . . , xn) ∈ Q ⊆ N(k, P2). So, for each i, k + 1 ≤ i ≤ n, xi ∈ P2. Assume
that, for every i satisfying in k + 1 ≤ i ≤ s, we have xi �= 0, and, for every i satisfying
s + 1 ≤ i ≤ n, we have xi = 0. Since ∩+∞

m=1P
m
2 = 0, then, for each i, k + 1 ≤ i ≤ s, there

exists a natural number ni such that xi ∈ Pni
2 − Pni+1

2 . Without loss of generality, we can
assume that nk+1 = min{ni, k + 1 ≤ i ≤ s}. Suppose P2 = Rp. Let, for every i, k + 1 ≤ i ≤ s,
xi = pnk+1ti. So, we have pnk+1(0, 0, . . . , 0, tk+1, tk+2, . . . , ts, 0, 0, . . . , 0) = z ∈ Q, and since
Q is a P1-prime submodule, then (0, 0, . . . , 0, tk+1, tk+2, . . . , ts, 0, 0, . . . , 0) ∈ Q ⊆ N(k, P2).
Consequently, tk+1 ∈ P2, which is a contradiction.

Note that in this case P1 = 0. To prove this result, let w ∈ P1. Thus, w = r1p, for some
r1 ∈ R. Since p �∈ P1, r1 ∈ P1, and so r1 = r2p for some r2 ∈ R. Therefore, w = r2p

2 ∈ P 2
2 . By

induction we can show that w ∈ Pm
2 for each m ≥ 1. Hence, w ∈ ∩+∞

m=1P
m
2 = 0.

v) Let ht P = m, and P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pm = P be a chain of prime ideals of R. By
Proposition 3.2, for each s, 0 ≤ s ≤ m, PsF (PsF ∼= ⊕n

i=1Ps) is a prime submodule of F, and
by part i), the following is a chain of prime submodules of F :

P0F ⊂ P1F ⊂ P2F ⊂ · · · ⊂ PmF = PF ⊂ N(1, P ) ⊂ N(2, P ) ⊂ · · · ⊂ N(k, P ).
Hence ht N(k, P ) ≥ k + m.

Proposition 3.4 Let R be a principal ideal domain, F a free R-module of finite rank and N
a P -prime submodule of F. Then :

i) There exist a basis {x1, x2, . . . , xn} of F and an integer k, 0 ≤ k ≤ n − 1, such that
N = N(k, P ).

ii) For each integer k, 0 ≤ k ≤ n − 1, the chain N(k, 0) ⊆ N(k, P ) is saturated.
iii) If P �= 0, then ht N(k, P ) = k + 1.

iv) If P = 0, then ht N(k, P ) = k.

Proof i) If N = 0, then N = N(0, 0). Now let N �= 0. Since R is a principal ideal do-
main, there exist a basis {x1, x2, . . . , xn} of F and also an integer d, 1 ≤ d ≤ n, such
that {r1x1, r2x2, . . . , rdxd} is a basis of N, where ri ∈ R − {0}, and r1|r2|r3| · · · |rd. Let
(N : F ) = P = Rp, where p is a prime element of R or p = 0.

First we let p be a prime element of R. Then pxi ∈ N for all i = 1, 2, . . . , n and therefore,
pxi = r′irixi for some r′i ∈ R. Hence ri|p for all i = 1, 2, . . . , n. Consequently, ri = 1 or ri = p
(up to multiplication by a unit of R). Furthermore, since pxn ∈ N, then in this case d = n. Let,
for each i, 0 ≤ i ≤ k, ri = 1 (up to multiplication by a unit of R), and for each i, k+1 ≤ i ≤ n,
ri = p. Then we have N = N(k, P ).

Now let p = 0. Since rixi ∈ N and N is a prime submodule of F, then ri = 0, or xi ∈ N.
Note that xi ∈ N implies ri = 1. So, in this case, for each i, ri = 0, or ri = 1. Let, for each
i, 0 ≤ i ≤ k, ri = 1, and for each i, k + 1 ≤ i ≤ d, ri = 0. Then we have N = N(k, 0).

ii) If P = 0, obviously N(k, 0) = N(k, P ). So let P �= 0. Since R is a principal ideal domain,
then P is a principal ideal and ∩+∞

m=1P
m
2 = 0, and hence we have the result by Theorem 3.3 iv).

iii) Let B =
∑k

i=1 Rxi + Pxk+1 Then obviously, N(k, 0) ⊆ B ⊆ N(k, P ) = N. By part ii),
there is no prime submodule of F between N(k, 0) and N(k, P ). So N is a minimal prime
submodule over B, and since R is a principal ideal domain, by Proposition 2.9 i), the GPIT
holds for F over R, hence ht N ≤ k + 1. Also, by Theorem 3.3 v), we have ht N ≥ k + 1.
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iv) Evidently, rank N = k, and since N is a minimal prime submodule over itself, then by
Theorem 2.10, we have ht N = rank N = k.

Proposition 3.5 Let R be a principal ideal domain, F a free R-module of finite rank and N
a minimal prime submodule over a non-zero cyclic submodule B of F . Then :

i) ht N = 1.
ii) N = PF for some prime ideal P of R or N is a cyclic submodule.

Proof By Proposition 2.9 i), the GPIT holds for F over R. Hence ht N ≤ 1, and since 0 is a
prime submodule, then, ht N = 1. Therefore, if (N : F ) = 0, then the number k introduced in
Proposition 3.4 iv), is 1. That is, N = N(1, 0) = Rx1. Thus, N is a cyclic submodule.

If (N : F ) �= 0, let (N : F ) = P. So, 0 ⊂ PF ⊆ N and we know that ht N = 1. Hence
N = PF .
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