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1 Introduction

Topological solitons (vortices) arise in a variety of physical problems and have been the subject
of much study over the last four decades or so. Among the best known examples are domain
walls and magnetic bubbles in a ferromagnetic continuum, vortices in superfluids and supercon-
ductors, topological defects in liquid crystals, as well as skyrmions, monopoles and instantons
which are particle-like solutions in generic models of high-energy physics. The present work ad-
dresses the static theory for some simplified model of planar ferromagnets and antiferromagnets.
The motivation of such a study comes from attempting a rigorous mathematical justification
of the dynamical laws of magnetic vortices formally derived in [1], [2] etc.

The magnetic vortices have been studied extensively for ferromagnets and weak ferromag-
nets. In both cases a nonvanishing magnetization develops in the ground state, albeit by a
different physical mechanism, which then allows detailed experimental investigations. In con-

trast, direct experimental evidence for pure antiferromagnetic vortices is absent. Nonetheless,
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theoretical arguments suggest that such vortices should exist for essentially the same reason
as in ordinary ferromagnets, even though the governing dynamical equations are sufficiently
different.

Though the best known examples of topological magnetic solitons are magnetic bubbles
observed in abundance in ferromagnetic films with an easy-axis anisotropy [3], the experimental
situation is also relatively less clear in ferromagnets with an easy-plane anisotropy (planar
ferromagnets) for which the relevant solitons are theoretically predicted to be half bubbles or
vortices. It turns out that the energy functionals controlling the statics of planar ferromagnets
and antiferromagnets are essentially the same, see for examples [1], [2] and [4].

To describe this simplified model, we let Q C R? be a bounded open connected domain
with smooth boundary. Define S* = {z\z € R3,2% = 0, (2!)? + (2?)? = 1}, §? = {a\z €
R3, (21)2 4 (2%)?+ (2®)% = 1}. Let g : 92 — S" be a smooth map of degree d. Let H} (Q,5%) =
{u\u € H*(Q,5%),ulaq = g}. For any u € H (€2, 5?), we let

I.(u) = /Q% [|Vu2 + (152)2] dr, &>0. (1.1)

The energy functional (1.1) supposedly controls the statics of planar ferromagnets and antifer-

romagnets. As in [1], [2], [4], we are interested in the behavior of critical points of I as e — 07.

If we replace S2 by R? and (u;)2 by O;‘:J 2)2, then the problem becomes the familiar simplified
model of the Ginzburg-Landau theory for spercanductors.

For the Ginzburg-Landau energy functional, the asymptotic analysis for minimizers (or
even more general critical points) has been carried out in [5] and [6]. There are numerous
developments since these works, see the lectures [7] by the second author (on a brief description
of the state of the art before 1995), and higher-dimensional analogues. Though our analysis
closely follows the seminal work of [6], there are many new subtle difficulties. A simple reason
for this is that we are now working with S2-valued maps. This nonlinear, nonconvex constraint
in the variational problem (1.1) gives rise to similar difficulties for the study of harmonic maps.
In other words, we have to deal with both infinite energy concentrations and finite energy

bubbling. Our first result is the following (see Theorem 2.1):

Theorem 1.1  Suppose Q C R? is a bounded connected open domain with smooth boundary.
Let g : 9Q — S be a smooth map of degree 0, and denote

My = {u\u € H, (2,5 ,/ |Vul? = inf )/ |Vv|2}. (1.2)
Q Q

vEHL(Q,51

Then there exists an e, = .(g,2) > 0 such that for any 0 < e < e,(g,Q), any ue. minimizes I,

on Hg1 (Q, 52), we have u? =0 and u. € M,. Moreover, M, is a finite set of smooth maps.

We note that Theorem 1.1 is somewhat different from Theorem 1 in [5]. In [5], the minimizers
ue can only approximate the limiting harmonic map ug in the space C1* for any a € (0,1)
(not in C?!). It is also clear that the image of u. in their case can not be in S! except for that
it is a constant. The reason for this difference is because S! is a totally geodesic submanifold
in S2 but not in R2.
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When the degree d # 0, as in [6], the minimum energy is going to oo as ¢ — 0. We have
(see Theorem 4.1):

Theorem 1.2  Suppose Q C R? is a bounded open simply connected domain with smooth
boundary. Let g : 0Q — S' be a smooth map with deg(g, 3, S*) = d > 0. For a sequence u.,,
minimizers of I, on H; (Q,52%), e; — 0, after taking a subsequence if necessary, there exist d

distinct points aq,...,aq € Q) such that

d
T —a; - ) o /=
we e = | L p=ge™ ™0 | in GR@\an . aah).
j=1 /
Here h, is harmonic in Q and u.|sq = g. Moreover, for § > 0 small, x € Q\ UL, Bs (a;) and
keZ, k>0, we have
1
DM ()| < e (k,8,,2) ¢TI

More information about the locations of the so-called vortex points ai,...,aq and some
precise asymptotic formulas will be described in Theorem 4.2.
One of the key points involved in applying “BBH”-asymptotic analysis to our problem is

the following gradient estimate (see Theorem 3.1):

Theorem 1.3  Suppose Q C R? is a bounded open domain with smooth boundary, and suppose
g : 00 — St is smooth. Then there exist €, = €.(g,2) > 0, ¢ = ¢(g,2) > 0 such that for any
0 <e<eu(g,Q), any ue. minimizing I, we have |Vuc(z)| < @ for z € Q.

Indeed this gradient estimate is also true for solutions with an image lying in a half-sphere
(see Proposition 6.3), which need not be a minimizer. Theorem 1.3 is the starting point in the
proof of Theorem 1.2 (even though one may use other arguments, see [8]). We may use the
techniques in [6] after having this gradient estimate. Moreover, it gives a better understanding
of minimizers.

The study of the existence and stability of special solutions to the Euler-Lagrange equation
(2.1) of I, would also be quite helpful for understanding the dynamics of vortices. Especially
for the problem

(u*)” u? a0
—Au= [ |Vul* + U~ 6 on B}, u(z)= (e'1%,0) for z € OBy, (1.3)

here u € C*° (B_%, 5’2), q € N. We have the following (see Proposition 5.1, Proposition 5.3 and
Proposition 5.4):

Proposition 1.1  There ezists a unique f = fe 4 defined on [0,1] such that f (0) =0, f(1) =
T and ueq = (sin f(r) e, cos f (r)) is a smooth solution to (1.3). In addition, f satisfies
0< f(t)<Z, f'(t)>0 for0<t<1. Foranye >0, u. is strictly stable, and hence a local

minimizer. If ¢ > 2, then for 0 < e < e(q), ueq is unstable.

The existence of solutions in Proposition 1.1 is dealt with by reducing (1.3) to ordinary

differential equations. The stability result is studied along the same lines as the work of [9]
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for the Ginzburg-Landau model. However, there are again some new technical difficulties. Due
to the nonlinearity introduced by S?, the second variation formula contains certain first-order
terms, unlike the one in [9]. These difficulties are overcome by a careful study of the qualitative
property of f., in the above proposition.

One of the most interesting aspects of our problem is the so-called energy quantization

phenomenon similarly to [10]. If we have a map v € C*° (]RQ, 52) satisfying
—Au = (\Vu|2 + (u3)2> u—u’es (1.4)

on R?, then do we have 1 [., (u3)2 € Z? If u decays fast enough at oo, then this is the case.

In fact we have (see Proposition 6.1):
Proposition 1.2 Suppose u € C> (R?, 5?) satisfies (1.4) on R?, u® — 0 as |z| — oo and
there exists ¢ > 0 such that

/ (|Vu|2 + (u3)2) <clogr for r>2. (1.5)
B,

2

Then fR2 (u3) = wd?, where d is the degree of % at oo, u' = (ul,ug), Moreover

|D*u (2) | < e(k,u)e @l ¢ >0, c(k,u) >0, foranyk >0,

|D*u ()| <

If we write u' + iu® = pe!(¥+¥) outside ball Br,, then |V ()| = O (ﬁ)

We point out that if u € C> (R?,S?) locally minimizes 7, then it satisfies the growth
conditions in Proposition 1.2 (see [11]) and hence the quantization property is correct. Another
important case for such quantization to be valid is when the image of u lies in the closed upper

half sphere. That is (see Proposition 6.4):

Theorem 1.4 Suppose u € C*° (R?, S?) satisfies (1.4) on R?, u® > 0, liminf|,_ o [Vu(z)| =
0, f]R? (u3)2 dx < oo. Then either u® =0 or

[u?(2)| < c(u)e’%7 |V ()] < c(u)e’%‘, [Vu(z)| < %, /]Rz (u3)2dx = md?,

where d is the degree of ﬁ at oo, v’ = (ul,u2).

We shall present various examples so that such energy quantization may be false. It is
obvious that there are many more rich classes of entire solutions of (1.4) than the one studied
in [10].

In our forthcoming works (also jointly with Jalal Shatah), we should apply the static theory
developed here to the study of the dynamics of magnetic vortices.

The paper is written as follows: In Section 2 below, we prove that when the degree of g is
zero and ¢ is small enough, then the minimizer of I is in fact a minimizing harmonic map to S*.

Section 3 proves the gradient estimate for minimizers. In Section 4, we use the gradient estimate
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proved in Section 3 and arguments from [6] to prove the convergence of minimizers away from
|d| vortex points. We also present some asymptotic formulas for this convergence. Section 5
studies special solutions to the Euler-Lagrange equation of I. and the stability property of these
solutions. In Section 6 we present several results on the energy quantization.

After the present work was accepted, we learned from S. Serfaty an earlier work by N. Andre
and I. Shafrir: ”On nematics stabilized by a large external field”, Rev. in Math Phys., Vol. 11,
No. 6, 1999, 653-710. In that paper authors studied many similar issues. However, we noticed
that one of the key point in the proof, the gradient estimates (see our Theorem 1.3), was not
fully explained and verified. They also did not discuss these energy quatization results as well

as Liouville type theorems.

2 The Case deg(g,09Q,5') =0

In this section, we shall study the behavior of minimizers of I, as ¢ — 0% for the case
deg (g, o0, S 1) = 0. Before we proceed, we would like to establish some basic properties for

minimizers.

Lemma 2.1  There exists at least one u. € H; (22, 5?) which minimizes I.. All minimizers

are smooth and satisfy

u3)2 w3 '
—Au, = <|Vu€|2 + (652) ) Ue — E—;eg in Q, ucloq =g (2.1)

Here e3 = (0,0,1).

Proof The existence follows from the direct method in the calculus of variations. The smooth-
ness of minimizers follows from [12]. In fact, it follows from [13] and [14] that every critical

point of I. is smooth.

Lemma 2.2  Suppose u. is a minimizer of I.. Then either u? =0 in Q or u2 > 0 in Q or
u <0 in Q.

Proof Let u. be a minimizer of I.. Putting v(z) = (ul(x),uZ(x), [u(x)]), then v € H (2, S?)
is also a minimizer. From Lemma 2.1 we know v is smooth and it satisfies

3)2 3
v v

—AP = <|W2 + %) V==, 020, ¥¥lsn =0.
£ 9

It follows from the Harnack inequality that either v3 = 0 or v > 0 in Q. If v = 0, then u2 = 0.
If v3 > 0 in €, then v2 > 0in Q or u? < 0 in Q.

Now we may state the main theorem of this section:

Theorem 2.1  Suppose Q C R? is a bounded connected open domain with smooth boundary.

Let g : 09 — S be a smooth map of degree 0, and denote

My = {u\u € H;(Q,Sl),/Q |Vu? = inf /Q Vv|2} . (2.2)

vEH(Q,5%)



546 F. B. Hang and F. H. Lin

Then there exists an e, = 4(g,Q) > 0 such that for any 0 < & < e,(g,Q), any us minimizes I,
on Hg1 (2, 5?), we have u? =0 and u. € M. Moreover My is a finite set of smooth maps.

Remark 2.1  We note that in Theorem 1 of [5], the minimizers u. can only approximate the
harmonic map ug in the space C*® for any a € (0,1). It is also clear that the image of u. in
their case can’t be in S* except when it is a constant. This difference of our result from theirs

is due to a simple geometric fact that S' is a totally geodesic submanifold of S? but not of R2.
We use the idea in Lecture 1 of [7] to show Theorem 2.1.

Lemma 2.3  Suppose g, Q are as in Theorem 2.1. Then M, is non-empty and compact in
HY(Q).

Proof Since the degree of ¢ is zero, we may find a smooth extension % :  — S!, then from

the direct method in the calculus of variations we know M, is non-empty. Put

A= inf / | Vo2, (2.3)

veH1(Q,S1)

Suppose u; € Mg. Then fQ |Vuj|2 = A, which implies that we may find a subsequence which
is still denoted as u; such that u; — u for some u € H'(Q). Hence u € H} (2, S") and

/ |Vul?> < liminf/ |Vui? =\ (2.4)
Q i—oo Ja
From (2.4) we get [, |Vul[? =\, u; — uin H'(Q) and u € M,.

Corollary 2.1  Under the assumptions of Theorem 2.1, we have for any € > 0, there exists
6 =6(9.Q,¢e) > 0 such that for u e My and E C Q, we have [, |Vul* < e whenever |E| < 4.

Lemma 2.4  Under the assumptions of Theorem 2.1, for any €9 > 0, there exists an ro =

r0(g,Q,€0) > 0 such that for every minimizer u. and every x € Q we have

3\2
/ T+ W <o
By (z)NQ €

if 0 <e<eulg,Q,¢e0).

Proof From Corollary 2.1 we know there exists an 79 = (g, $2,€¢) > 0 such that for z € Q

and u € My,
/ Va2 < 2 (2.5)
By (2)N92 2

If the conclusion of Lemma 2.4 is false, then there would exist €; — 0, u; = u.; minimizing I,
and z; € Q such that

u)?
/ [V |* + ( jz)
By (2)NQ €5

After passing to a subsequence we may assume z; — z.. On the other hand, for every v €

H}(Q,5"), we have s
/|Vuj2+( g/ |Vol2. (2.7)
Q Q

(2.6)
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After passing to a subsequence again we may assume u; — w in H'(Q), u; — w in L*(Q).

Jo?)? < &3 [ |Vul> — 0 implies w® = 0, hence w € H}(Q,5"). Also from [, |Vw|* <
Jo IVo[?, we know [, [Vw|? = X and w € M,. M, and X are defined in (2.2) and (2.3). Taking

v =w in (2.7), we have

(uf)?

\Vu;|* + 24— < | |[Vw]? (2.8)

J 2 )
Q €5 Q

/ |Vw|? < li_minf/ |Vu;i? < limsup |V, |* < / |Vwl?. (2.9)
0 i—oo Jo j—o0 Q
Hence [, [Vu;|> — [, [Vw|?, the latter fact implies u; — w in H'(Q2). Going back to (2.8) we

(u3)?

get [, —%— — 0. Gathering all these facts, we have

2 (u‘?)Q 2 2 2
[ muPe = wupe [ (T - )
By (2)NQ &j Bry (2)NQ By (x)NQ

u?)?
+/ ( JQ) —>/ |Vwl|?. (2.10)
By (z)NQ €5 By (2.)NQ

(2.6) and (2.10) together imply [, ()N |Vw|? > eo; this contradicts (2.5) because w € M,,.
ro (@

Hence the conclusion of Lemma 2.4 follows.

Lemma 2.5 Suppose u : Q — S? is smooth and —Au = (|Vul? + g)u - Z—jeg, where
es = (0,0,1). Denoting e-(u) = 3 [|Vu\2 + g} , then

A e (w)? — D22 — 2 watp - ) 2.11
ex() = dec(w)? — [Duf? — S - L5, (2.11)

and hence —Ne.(u) < dec(u)?.

Proof For each k = 1,2 or 3, we have
k k u? k 212 j j 1 312 3 A3
—Au® = 2e. (u)u” — 5_263’ Ne.(u) = |D?ul —|—Z@iu AT 5—2(|VU |“ + v’ Au’);
4,J
plugging in the equation of u, we get the conclusion.

Lemma 2.6 Ifve C®(B,), v >0, —Av <v? on B,, then there exists an ny > 0, such that

fB,- v < o implies Supp, v <c JCB,,- v < -5no. Here c and ng are absolute constants.

Proof By scaling we may assume r = 1. Put K = max|g<;(1 — |z[)?v(2). We claim K < 1.
Otherwise, if K > 1, choosing w9 € B; such that (1 — |zg])?v(z0) = K. Setting o = 1 — |0,

then for x € Bg(20), v(z) < K w(z) = %v(mo + ﬁx) is well defined on Bj. It satisfies
1
—Aw <w? w<1lon By, w(0)=-, / w:/ v(z)dz < no.
4 B1 B_o_(z0)
2VK

Hence —Aw < w. From the mean value inequality we know w(0) < ¢ JCBl w < cng. Here c is

an absolute constant. Choose 79 small enough such that cng < %, and we get a contradiction.
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Hence K < 1. On B% we have v(z) < 16, —Awv < 16v. So again by the mean value inequality
we get v(z) < ch3 v < chl v < eno.
1

Corollary 2.2 Under the assumptions of Theorem 2.1, there exists an e, = e,(g,Q2) > 0
such that for 0 < e < e.(g,Q), any uc € H)(Q, S*) minimizing I., and K any compact subset
of Q, we have

u3)2
%) <c(g9,Q,K).

ap (s
K
Proof This follows from Lemma 2.4, Lemma 2.5 and Lemma 2.6.

Now we estimate up to the boundary.

Lemma 2.7  Under the assumption of Theorem 2.1, there exists an €, = €4(g,) > 0 such
that for any 0 < & < e,(g,Q) and any ue. minimizing I., we have

3\2
sup <|Vus|2 + ﬂ) < (g, ).
Q 3

Proof From Lemma 2.2 we may assume u> > 0. We prove Lemma 2.7 by a contradiction
argument. If Lemma 2.7 is false, then there would exist e; — 0, u; = u., minimizing /., such
that

G
sup | |Vu;|* + —5— | = K; — oo. (2.12)
Q &5

Suppose the maximum is reached at z; € Q. From Corollary 2.2 we know x; must go to 02,

we may assume z; — . for some z, € 0Q). By the arguments in Lemma 2.4, after passing to
342

a subsequence, there exists a u € M, such that u; — u in H'(Q) and [, (u;;) — 0. Denote

j

as the closest point to z; on 9. By rotation and translation, we may assume z; = 0 and the

tangent line of A€ is the coordinate line {¢* = 0}, hence z} = 0. Put

X
7=V Kjg; >0, v;i(z) =y (—7) yj =V Kjzj.
J
9?2 1 1

For e, (v;) = & [\ij|2 + %], we have e (v;)(y;) = 5 and e, (vj) < 5. First we observe

yf — 0, otherwise we may use Lemma 2.6 to get a contradiction. Then we observe that 7; must
go to zero, otherwise we may use standard elliptic estimates and the fact that [ Bing, €7 (v;) =0
(€ is the domain of v;) to get a contradiction. From v} < 7; we know supg, v} — 0. Putting

vjl + iv? = pje™i on By N, then p; is very close to 1 and we have
div(p?ngj) =0, Apj— pj|V¢>j\2 = —2pjer, (vj). (2.13)
Since ¢; is smooth on 9Q; N By and converges to a constant, we have
IViloa(Bina;) — 0. (2.14)
Setting r; = 1 — p;, then we have

riloa,nm, =0, 7j >0, —Ar; < p;|Vé;* < 8; — 0in By NQ;. (2.15)
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We also know r; — 0 uniformly. A barrier argument tells us
|ij|L°°(8Qij%) < ajy, (2.16)
where a; — 0. Since

—Av;’ < v?v U?’ o0,;nB, = 0, vj)-’ — 0 uniformly, (2.17)

similar arguments tell us
‘V”?|L°°<mm3%) < B, (2.18)

where #; — 0. From (2.14), (2.16) and (2.18) we get e, (v;) < 5, 7; — 0 on 992;NB;. Now by
the mean value inequality near the boundary (see Chapter 8 of [15]) and —Ae,, (v5) < 2e., (v5)

in Q;, we get
1
3 = e, (v;)(y;) < c er; (vj) +75 | =0,
B% ﬁQj
which is a contradiction.

Proof of Theorem 2.1 By Lemma 2.7 we know for 0 < £ < £,(¢,Q) and any u. minimizing

1., we have
3

2
sgp (Vug|2 + %) < co(g,9). (2.19)

1

vV co(9,52)
1

We may assume e, (g, Q) < ; then for 0 < & < £,(g,Q), we have

3\ 2
i <|Vu,g|2 + (u€_2)> > 0. (2.20)

Now since

1 (u2)”
—Aud + =i |Vue|? + ;2 uP =0, udlpg =0, (2.21)

it follows from the maximum principle and (2.20) that u? = 0, then it is clear that u. € M.

To see M is finite, we define
Hy = {u\u € H, (2,5") is a harmonic map to St} (2.22)

Fix a ug € Mg, then the map from H; (defined in the same way as in (2.22) by replacing
g with 1) to Hy given by u — (up-u) (complex multiplication) is a bijection. Let 9Q =
Ur_4Cj, Co,...,Cpn be connected components of 0. Then for any u € Hi, v = €% with
p e C™ (ﬁ, R), a harmonic function satisfying ¢|c, = 0, ¢|c, = 2k;m, kj € Z for 1 < j < n.
Let p; € C*° (ﬁ, R) be the harmonic function on 2 with ¢;|c, = d;i, for 0 <k < n. Then

o= 2kmp;. (2.23)
j=1
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Since V1,..., Vg, are linearly independent, we may find a real number ¢ > 0, such that for
any ai,...,a, € R,
/ |v(a’1(p1+"'+an(pn)|2 ZCZG?- (224)
Q ,
j=1

For the w € Hy above, by (2.5) and (2.6) we have

/Q|vu\2 :/Q|v¢|2 >e) k. (2.25)

=1

For any v € My, v = up - v with u € H;, then for the ¢, k; corresponding to u, we have

e < [(vuP <2 [ Vwl e [ VoP <2 [ VuPan (220
= Q Q Q Q

where ) is defined in (2.3). (2.26) implies #M, < co.

3 A Gradient Estimate for Minimizers

In this section we shall prove a gradient estimate for minimizers.

Theorem 3.1  Suppose Q C R? is a bounded open domain with smooth boundary, and suppose
g :0Q — S is smooth. Then there exist €, = 4(g,9) > 0, ¢ = ¢(g,Q) > 0 such that for any

0 <e<eug,R), any ue minimizing 1., we have |Vu(x)| < @ for x € Q.

We shall prove in Proposition 6.3 that this gradient estimate is true for all solutions lying
in a half sphere, which need not be a minimizer. Both proofs will be helpful for the future
development. We also note that the map ¢ in Theorem 3.1 is not necessarily of degree zero.

We need to establish several Liouville-type theorems before proving the gradient estimate.

Lemma 3.1  Suppose u is a continuous subharmonic function on R? which is bounded from

above. Then it is a constant.

Proof This is a well-known fact for R? which is not true for R®, n > 2. The reason for this
difference is because the fundamental solution of the Laplacian in two dimensions is essentially
different from higher-dimensional ones. One may prove the lemma by a simple comparison with

the logarithm function.

Lemma 3.2  Suppose u : R2 — S? is a smooth harmonic map with v> > 0. Then either

u = const or u(z) = (cos(x),sin(x),0), where 1 is a harmonic function on R2.

Proof From the harmonic map equation we know —Awu? = |Vu|?u® > 0. Hence —u? is

subharmonic on R%. Because it is bounded, from Lemma 3.1 we conclude that v® = ¢, a
constant. If ¢ > 0, then ¢|Vu|?> = —Ac = 0 implies u is a constant. If ¢ = 0, then u® = 0 and
the image of u is in S!. Since R? is simply connected, we know u(z) = (cosv(x),sin(z),0)

and % is a harmonic function.
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The following is an easy calculation:

Lemma 3.3  Suppose U is an open subset in an m dimensional Riemannian manifold M,

u€ C®(US" 1Y), ¢ € CX(U,RY), define u(z,t) = % o(t) = [y [Varu(z, t)Pdpns.
Then

¢"(0) = 2/U [(V (3(u-9)?u —2(u-¢)p — |p|*u) , Vu) + |V (¢ = (u- p)u) |?] duar-
If, in addition, we know u is a harmonic map, then
0 =2 [ (I (") = [VuPle" ] dias

Here T = ¢ — (¢ -u)u. If, in addition, ¢" (0) > 0 for all ¢ € C* (U,R"), then we say u

is stable.

Lemma 3.4 Ifu:R2 — S? is a smooth stable harmonic map with u®> > 0, then it is a
constant map. In particular, any locally minimizing harmonic map from R? to a half sphere is

a constant map.

Proof 1If u is not a constant, then from Lemma 3.2 we know u (x) = (cos® (x),sin (x),0)
and v is a nonconstant real harmonic function. From Lemma 3.3 we know that for any n €
C2° (R2,R), by taking ¢ = (0,0,7), we have

[, 19 =19 > . (3.1)

Fix an 1y € C° (R?,R) such that 0 < no < 1, mo|p, = 1, nolr2\p, = 0. In (3.1), setting
n(z) = nr(z) = no (%) for R > 0 and letting R — o0, we get [, [V¥|? < ¢, an absolute
constant. Hence 1) = const, a contradiction.

We shall prove in [11] that any minimizing harmonic map from R? to S? is a constant map;

here S? need not have the standard metric.

Remark 3.1 The condition «? > 0 in Lemma 3.4 can’t be dropped because any holomorphic
or anti-holomorphic map from R? to S2? is stable. In fact, a theorem of A. Lichnerowicz
says every holomorphic or anti-holomorphic map from a compact Kéhler manifold to another
Kéhler manifold is energy minimizing in its homotopy class (see Theorem 4.2 in [16]). If
we examine the proof closely, one can easily show that without the compactness condition
on the domain manifold, any holomorphic or anti-holomorphic map is energy minimizing in
its homotopy class if we only consider those homotopies supported in a compact subset. In
particular, this shows holomorphic or anti-holomorphic maps between Kéahler manifolds are
always stable harmonic maps.

We will use Lemma 3.4 to classify all the blowing-up maps of certain equations later. Indeed
we only need the following version, which is slightly different from the above one. We present

it here because the proof will be quite helpful for further development.

. 1 2 .
Lemma 3.5 Let u(x) = (ez(co"'clm tezw ),O), where cg, c1,co are real constants, either ¢ or

¢z being nonzero. Then u is not locally minimizing for I (see (1.1) for definition) on R2.
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Proof By contradiction. If u is locally minimizing I, without loss of generality we may assume
u(z) = (ei/\’”170), A > 0. Choose a map w : [0, 27”} x [0,1] — S? such that w is Lipschitz and

2 . 2
w(0,1) = w (%t) —w(s,1) = (1,0,0), w(s,0)= (eml,o) Cfor0<t<1,0<s< 7”

Consider for [ > 0, I; = {x\O <zl < 27”7 0<z2<1l+ 2}. For x € I;, define

w(zx) if 0<a?<1,
v(z) =< (1,0,0) if 1<a2?<I1+1,
w(xl,l+27x2) if 1+1<z2<i1+2.

Then v;lor, = ular,, hence I1(u) < I; (v;). In other words, 2rA(l + 2) < 2I;(w). Letting
l — oo, we get a contradiction. Another way to prove the lemma is the following: If u is locally

minimizing, then for every R > 1, define vy : B — C by

o () = (R — |z|) + (|z| = R+ 1) eileoterz’+eas®) 3¢ R 1 < |4 <R,
f 1 if |z]<R-1.

It follows from formula (5.11) that I1 (I' o vg, Br) < c¢(c1,c2) R. Here I' is the stereographic
projection defined in (4.1). Hence 3 (¢? +c3) R? = I (u, Br) < c(c1,c2) R. Letting R — oo,
we get a contradiction.

Lemma 3.6 Denote Hy = {z\z € R?, 2% > 0}, the open upper half plane. Suppose u : Hy —
S? is a smooth harmonic map, which is stable in Hy. If, in addition, u® > 0, u|pp, = const,
|Vu(x)| <1, then u = const in Hy.

Proof We have —Au(z) = |Vu(z)[*u(z). For any sequence h; — oo and [;, define u;j(x) =
u(z +1;, 22+ hy), for z € H;, H; = {z\z € R?,2? > —h;}. Then —Au;(z) = |Vu,(z)[*u;(z),
|V w;(z)| < 1in H;. Hence for any o € (0,1) and r > 0, ‘“J’|Cl«a(B,,) < ¢(a,r). From the
Schauder theory we know after passing to a subsequence u; — v in C*°(R?), v € C* (R?, 5?).

Since u; is stable, from Lemma 3.3 we know for any ¢ € CZ° (HJ»,]R?’)7
[ (96010 P = (1eP = (- 9)°) [Vus) dz 20,
H;
Letting j — oo, we get for any ¢ € Cg° (R27R3),

[ (9= @010 = (1oP =0 )°) Vo) da > 0

that is, v is a stable harmonic map on R2. Furthermore, ui’ > 0 implies v3 > 0. From Lemma

3.4 we know v must be a constant. Hence Vu;(z) — 0 in C°°(R?). This tells us that

lim <Sup |Vu(x17x2)|> =0. (3.2)
z2—00 \gzleR
Now let us look at the Hopf function

©(2) = |01u)? — |Oau|* — 2i(01u - Dour).
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We know it is a holomorphic function on the upper half plane (see [17] Section 1). Imgp is
harmonic and it is zero on {22 = 0} because u is constant on this line. It is also bounded
because |Vu| is. Hence Imp = 0. From the Cauchy-Riemann equations we know Rey = ¢, a
constant. From the limit in (3.2) we know ¢ = 0. Hence |0;u|? = |0qu|?. Since u is a constant
on {z? = 0}, we know

d1u(z',0) = dou(z',0) = 0. (3.3)

Put @(x) = u(x) for 22 > 0 and a(z) = u(x!, —2?) for 2 < 0. Then from (3.3) we know
4 is a harmonic map on R2 with @3 > 0. If @ is not a constant, from Lemma 3.2 we know
u(x) = (cos(x),sintp(x),0) and ¢ is a harmonic function. From the bound of |Vu| we know
1 must be linear and |Va| = |Ve| = a > 0. This contradicts the limit in (3.2). Hence @ is a

constant and we get the lemma.

Proof of Theorem 3.1 ~ Without loss of generality, we assume u2 > 0, by Lemma 2.2. Suppose
the conclusion of Theorem 3.1 is not true; then we may find €; — 0, u; = u.;, minimizing I,
such that

K; = ejsup |Vu;(z)| — oo.

e

Choose z; € Q such that ¢;|Vu;(z;)| = K;, define

A _ K.
vj(x) = u; (wj + %x) for x € Q;, Q; = g—J(Q —zj). (3.4)
j j

Then

2 ()7 v

—AU]‘ = |ij| + ? Uj + Feg on Qj, |V’U](JZ)| < 1, ‘V’UJ(ON =1 (35)
J J

There are two cases we are going to discuss. The first case is {2; — R? as j — oo. In this case,

from (3.5) we get for any o € (0,1), any r > 0, |vj]c1.a g < c(a,r). Hence we may assume

v; — v in C*°(R?) after passing to a subsequence. We have v € C*° (R?, S?) and |Vv(0)| = 1.

Claim 3.1 v is a locally minimizing harmonic map on the whole plane.

Proof of Claim 3.1 In fact, for any r > 0, w € H'(B,,S?) such that w|gp, = v|gp,. For
0<d<1, set

x
< —
T3 when |z| < (1 —0)r,

wjs(z) = _ _
m(r |x|v (ri) + Mvj (ri)> when (1 —9)r < |z| <,

rd || 70 ||

where II(§) = é—l for £ € R3. Set

w( f ) when |z| < (1—0)r,

ws(z) = 0
v (7“ ) when (1—9)r <|z| <.

||
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We have w; s — ws in H'(B,). Since w; s|an, = vjlap,, we know

() (v2)?
[ 1Vl + g el
r J

Letting j — oo, we get [ [Vws|? > [ |Vo[. Letting § — 0, we have [, [Vw|* > [, |[Vv|2.
This proves Claim 3.1.

Now v? > 0 implies v® > 0. It follows from Lemma 3.4 that v is a constant. This contradicts
[Vu(0)| = 1.

The second case is §2; — H, H being a half plane. After rotation we may assume H =
{z\z € R?%, 22 > —a}, where a is a nonnegative number. Since on 9Q; the v; is simply a
dilation of g, we have for any r > 0, a € (0, 1), "I}j‘clya(m) <c(a,r,9,9Q). Hence v; — v in
Cc> (ﬁ), v e C™® (F, 52). It is constant on OH. A similar argument to that above shows v is
a locally minimizing harmonic map in H, also v® > 0, |[Vv(0)| = 1. From Lemma 3.6 we know

v is a constant, and we have a contradiction.

4 The Case deg(g,09,S') #0

In this section, we shall discuss the case when we have a topological obstruction, that is, the
case when deg (g, 09, Sl) #0.

Theorem 4.1  Suppose Q@ C R? is a bounded open simply connected domain with smooth
boundary. Let g : 9Q — St be a smooth map with deg(g,08,S') = d > 0. For a sequence u.,,
minimizers of I, on H; (Q,5?), e; — 0T, after taking a subsequence if necessary, there exist d

distinct points ay,...,aq € Q) such that

a; P
Ug; = Ux = H |l‘—aj| lha(I),O m CloC(Q\{al,...,ad}).
J
Here h, is harmonic in  and u.|sq = g. Moreover, for § > 0 small, x € Q\ UL, Bs (a;) and
keZ, k>0, we have
P _ 1
|DFu2 (2) | < c(k,6,9,Q) e “Foame

Remark 4.1 We note that the convergence of minimizers u. to u, away from the vortices
is in C°° topology, unlike the C* convergence in [6]’s case. The reason for this difference is
explained in Remark 2.1.

We shall determine the location of a1, . .., aq after proving this theorem. Recall the following

important annulus lemma proved in [10]:

Lemma 4.1 (Annulus Lemma from [10]) A = A, ., = By, \Bry, u € H (A, R?), |u| > 0 > 0,
T%IA (1 - |U‘2)2 <K, d= deg(‘u‘, OB,) for ro < 1 < i, u = pe'T) where p = |ul,
0

W € HY(A,R) is a well-defined function. Then

22
AWWZ%fm} /WW+—/WW Qﬁ+—)
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Lemma 4.2  Suppose Q C R? is a bounded open simply connected domain with smooth
boundary, and suppose G. : 02 — S2 satisfies
1 ~31 2 -
= (32)" ds + || m(00) < K,
Fle)

and §. — § uniformly on 0S). Here deg (§,00,S') =0, § = (ewo, O) on 0. We denote by ¢g
the harmonic extension of itself from 0Q to Q, Gy = (6“"0, 0) on Q. Suppose . minimizes I.

in H} (92,5%). Then
1
. — o in H'(Q), 5—2/ (@)% — 0.
Q

Proof Denote

(4.1)

2 1 2 2 1— 2
PR = (00,0} LA = (2 s ).

L[yl L+ [yl 1+ [yf?
This is the standard stereographic projection. If we use I'~! as the coordinate, then the metric
on S? is given by

gs2 = (cly1 @ dyt +dy® @ dy2) .

(1+[yP2)*
Denote g. =I'"'o0g., g =T"' 0§ We want to construct a comparison function v. = n.e'%=.
For convenience, let d (z) = dist (z,09Q) for any x € R?. There exists a § > 0 such that for any
x with d (z) < 6, there exists a unique ¢ (x) € 9Q such that |z — ¢ (z) | = d (z). For = € Q, let

@%P@)mmn, it d(z) <e;

Ne (x) - (4'2)
1, if d(z)>e.
It is clear that 7. — 1 uniformly on Q. Simple computations show
1
[P <cuce 5 [@-np <c0e (43)
Q Q

On the other hand, on 99, we may write g. = |g-|e’?= such that p. — o uniformly. We
denote by . the harmonic extension of itself from 02 to Q. It follows from the interpolation
inequality that p. — ¢ in H' (Q). By considering the minimum property of @. and choosing
I' 0 v, as a comparison map we get

1
[war s [ [
Q e2 Ja Q

4 1 /1—|v]?\?
e 4 (12)
(14 |v:]?) e2 \ 1+ |v.]

4 1 /1-n2\"
— - _(IV 2_"_ QV 2 +< E)
/Q (1+77§)2 (l Nl Nz Vel ) 2 \1+72
< (K, Qe + i|V<p 2 (4.4)
- a(+m)? T '

Suppose @, — @ in H'(Q). Taking a limit in (4.4) we get

/ VP < / Vo2 = / Vol (4.5)
Q Q Q
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Since @ € H;(9,5"), (4.5) implies @ = @g. Note that it follows again from (4.4) that

limsup/ \Vﬂ8|2§/ | Vo). (4.6)
Q Q

e—0t
(4.6) implies @ — o in H'(2). Going back to (4.4), we get % [, (@ )

Lemma 4.3  Under the assumption of Theorem 4.1, there exists a ¢ = ¢(g,2) > 0 such that

for any 0 < e <1, any ue. minimizing I. we have

1
I (us) < mdlog R +c(g,9). (4.7)

Proof Choose a w € C™® (B_l, 52) such that w(z) = (z,0) for € dB;. Pick up d different
points in €, namely ai,...,aq, fix a p > 0 suitably small, let Q, = Q\ U?Zl B,(aj). Define
G:00 — St as
g(z) x € 08,
A — o
3@ (‘” % ,o> z € OB, (ay).

|z — ajl

Since deg(g, 99Q,,S1) = 0, we may find @ : Q, — S! smooth and i|pn, = §. Now define

a(x) x € Q,,
v.(x) = (@ — ,0) z € B,(a;)\B:(ay),

w(x €“f'> z € Bo(a;).

Then I.(u.) < I(ve) < mdlog L + ¢(g, Q).
Now let us state the Pohozaev identity:

Lemma 4.4  Suppose D C R? is a bounded open domain with piecewisely C' boundary. Let
_ 3\2
u € C(D, S?) satisfy —Au = (|Vu|2 + %) u— Z—geg. Then

i u32 1 T-v u23:l o wl2ds
S L5 [ wnloatis=g [ @l
+L (z-v) (u3)2ds—/ (z-7) (Oyu - Oru) ds

2¢2 Jop oD

where v 1s the unit outward normal and T is the unit tangential vector in the positive direction.
Suppose D is strictly star-shaped with respect to 0, i.e. there exist « > 0, p > 0 such that
|| < p forx € D and x-v > ap for x € OD. Then

1 ap P 2
gD(u)+IAD|8u|ds<—/ ds+( +§)/8D|87u|ds.

Proof Multiply the equation by z7 Oju, then do integration by parts.

We also need the following comparison function from Lemma 2 on p. 130 of [5]:
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\1\271%2

Lemma 4.5 For R>0,e>0, w.(z) =e 2r , then

We 1 e |o*\ m2-r?
—AE — Y= 1= - — IcR
et T ( R 4R2> ¢

In particular, if 0 < e < %R, then —Aw. + %5 >0 on Bg.

Proof of Theorem 4.1  First we have
1
/ |Vud|? + —2/ (ug)Q <c(g,92) forany 0<e<1. (4.8)
Q € Ja
In fact, if we denote u. = (ul,u?), then it follows from [18] and [19] that
Lo s () LN S A
A §|VUE| + 12 dx = A §|Vu5| + Tzda:

2
1 1= Juf? 1
Z/Q§|Vu'62—|—%dmZﬂ'dlogg—c(gag)

This inequality and (4.7) imply (4.8).

To simplify the notations, we will use u. to denote u.,. By Lemma 2.2, we may assume
u? > 0. Denote S. = {z\z € Q,u(z) > 1}. For z € S, we may have \g = Ao(g,) > 0 such
that

/ (u2)° >_1 o9 (4.9)
Bae(mne €2 (g, Q) T '

This follows from the gradient estimate in Theorem 3.1, |Vu.| < M for € small. S. C
Uses. Biye(2); from the Vitali covering lemma we know there exist 5, ... Ty, € Se such
that S, C Ui=1 Bsyoe(25) and By,e(xf) are mutually non-disjoint. This together with the

inequalities (4.8) and (4.9) tells us N < ¢(g,€). After an induction argument we may assume

ke
Se € | Brc(a5), 2§ € 5., ke <e(9,Q), A= \g,Q), |2§ — 25| > 5)e for i # j.

i=1
We may assume k. = k after passing to a subsequence. We also assume z} — z,; € Q. Let
ai,...,a; be different points in z,q,...,2«. Choose a smooth, bounded, connected open set
Q' such that Q C €, also fix a smooth map § : '\ — S! such that jlpq = g. Any map
w: Q — 52 such that u|a£ = g can be considered as a map on €/ by setting u|ﬁ\Q =g. Fix a
6§ > 0 such that 6 < dist(€2, R*\Q'), § < 1|a; — a;| for i # j. When ¢ is small we have

l
UBAE ) UBs(a)

i=1 i=1

From the gradient estimate we know

|deg (uz, 0Bxe(75)) | = <c(g,9).

Uy
_ A,
27 ~/8BAE(3:5) |u5|2 :
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Here u. = (u},u?). By passing to a subsequence we may assume
deg (ul,0Bx(25)) =d;, i =1,...,k and deg (ué,@Bg(xf)) =k, i=1,...,1

Fix an i, set A; = {j\1 <j < k,25 — a;}. Then }_ d; = k;. Define

JEN;

Qfé Bs(ai)\ UB,\s

JEA;
By Lemma 4.1 and an inductive argument we have, for ¢ = 1,... [, that
)
/ |Vul|? > 27|ki| log = — ¢ (g, Q). (4.10)
Qs €
As in [6], we have k; > 0, for i = 1,...,l. Indeed, from (4.10) we know
! 5 l
S [P oot Sl - e, 970 = [Jor. (111)
i=179° i=1 i=1
Comparing this inequality with (4.7) and letting ¢ — 07, we get
! !
D Iml<d=) ri
i=1 i=1
which implies 22:1 |k;| — k; < 0, and hence x; > 0.
Combining (4.7) and (4.11) we see
1 d
/ |Vl |? + / |Vl |* < 2rdlog = 5+ c(g,Q), Q5 =\ U Bs(a;). (4.12)
i=1
We may assume u. — u, in HL_ (2\{a1,...,q;}) and u. — u, almost everywhere. From
Jo (u ) < c(g,92)e? we get u2 = 0. Since div (ul A Vul) = ul A Aul = 0 in €, taking a limit
we get div (u), A Vul) =0in Q\{a1,...,aq}. Hence from [13] we know u, is a smooth harmonic

map into ST on Q\{a1,...,aqs} and u.|sq = g.
Next, we verify each x; > 0. In fact, we already know x; > 0, if for some ¢, k; = 0, then
choose a Ry > 0 such that Bg,(a;) is contained in €’ and it doesn’t contain other singularities.

After passing to a subsequence we may assume for some R € ( , Ro),

3\ 2
/ |Vu|? + (u2) <c
OBr(a;) €

for some ¢ independent of €, u. — wu, uniformly on 0Bg(a;). From Lemma 4.2 we know

1

=2
€ BR(ai)

which contradicts (4.9), because Br(a;) contains at least one point of S.. This shows each x;

is positive. In fact each k; is exactly equal to 1. To see this, we use Lemma 4.1 to obtain

1
/Q, |V, > > QWZHf log% —c(g,9). (4.13)

) 1=1
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On the other hand, by the lower semi-continuity we have

/Q/ |V, |* < 27rd10g% +c(g,9Q). (4.14)
)
Combining (4.13) and (4.14) then letting § — 07 we get Y, k7 < >_. ki, hence > (k7 — ;) <0,
and this forces k; = 1, I = d. Via Lemma VIL.1 of [6, p. 63] and (4.14) we have a; € Q, for
i=1,...,d.

From the above arguments we know u, = <H‘;:1 %eih(x)70)7 where b is a harmonic
function in Q\{a,...,aq}, and u.|sq = g. Denote a = (ay,...,aq). Fixing a suitably small dg,

we have from the proof of Lemma 4.1 that
2 do 1 2
|Vu,|* > 2rlog — + = |[Vh|* —c(g,Q,a),
Asa (as) 0 2 Jas5 ()
for 0 < ¢ < §p. This, together with (4.14), implies
/ |Vh? <cl(g,Q,a), fori=1,....d.
As 50 (ai)

The latter fact implies h is of finite energy on the whole 2 and hence it is harmonic in 2 and
fully determined by its boundary value. We call it h,, then u, = (Hd 224 giha(x) 0). Now

j=1To—ay]

pick up any point x € Q\{ay, ..., aq}, and for suitably small R > 0,

312
/ (uz) — 0, ue — u, in H' (Br(z) N Q).
Br(z)nQ €

This, together with Lemma 2.3, Lemma 2.4 and the proof of Lemma 2.5, implies

32
u

sup [ [Vu|* + ( 82)

9_5 €

d
) < 0(97975)7 Qs = Q\ U Bé(aj)' (415)

Fix a § > 0 small, since

2
1 3
—Aud + (Z? - (IVual2 + %—2)) u?=0in Q. (4.16)

We conclude from (4.15), for e small enough, that

2
1 o (ud) 1
8—2—<|VU5| +5—2 24—820119%

Since u2 < 1 and u?|sq = 0, by the comparison function in Lemma 4.5 and the equation (4.16)
we deduce 0 < u(z) < e~ for x € Q5. The standard elliptic estimates and Sobolev inequality
yield that |u§|(;1,a(95) < c(a,g,Q,é)eiﬁ for « € (0,1),& small. On the other hand, by the
first two equations we get |ul|c1.a(0ys) < c(a, g,9,0). An induction argument along with the
Schauder estimates yields the conclusion of the theorem.

Now we want to locate the points aq,...,aq and get more information for the asymptotes.
We have the following:
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Theorem 4.2  The d-tuple a = (ay,...,aq) in Theorem 4.1 minimizes the renormalized
energy W(g,Q,b), b € Q%, (see Section 1.4 of [6] for a definition). We also have

32 d
_(“;;) Y AL e Z a;

=1 ng

in the sense of distribution, and
1
I.(u;) = mdlog — + dvyo + inf W(g,Q,b) + o(1),
€ beQd

where o will be explained later in Lemma 4.6. The minimizers have uniformly bounded p energy
forany 1l <p<2i.e.
[uclwieo) < c(g,Q,p) for 0 <e <1

For the third coordinate, we have
2|y < (g, Q).
Denote h(z) = (ﬁ,()). For any € > 0 and r > 0, let

Her)= it LG, 1(6)=1(e1)

Then I(e,r) = I(£), and we have the following:

Lemma 4.6 For 0 < t1 < to, I(t1) < 7r10g + I(ta). Especially for any 0 < t < 1,
I(t) < mlog 1 + I(1). We also know the limit o = hmtﬂo+ I(t) —mwlog 1 emists.

Proof For 0 <ty < to, define

1 1
(x,()> for — <|z| < —,
U(SU) = ‘xl tQ tl

minimizer for I on H}(B1,S5%) for |z] < —.
t2
Then we have
1 to 1 to
It1)=1(1,— | <L(u)=mlog=+ 1|1, — | =wlog = + I(t2).
tl tl t2 tl

Hence I(t) — wlog 1 is nondecreasing in t. Suppose u. minimizes I.. Then from (4.5) we have

(
Iz, |Vuc|?> > 2rlog L — ¢, where c is an absolute constant. Hence I(g) — mlog 1 > —

Proof of Theorem 4.2  First we give an upper bound for I.(u.) by choosing a comparison

function. For by,...,by, d different points in €2, denote uy(z) = (H? 1 lxib G mb(”)ﬂ), where

hp is harmonic in © such that uplgo = g. Choose a p suitably small, for each j, we know
up(x) = (z_—zjei@f(z),@ on B,(a;) and ©; is a harmonic function on B,(b;). For e > 0, o > 0

[z—b;|

small, define

up(2) it 2 e\Uj B,(by),
lz—=bj|l-(1—=0a)p
z—b; 10+ LT (0,(0)-05 (b)) ,
ve(x) = <x —b, | ( >70) if 2 € B,b)\B(1-0), b)),

e’ i) 0

minimizing I, in H1< ) (B(l,a)p(bj),sa) if @€ Bu_s),(b;).



Static Theory for Planar Ferromagnets and Antiferromagnets 561

By the fact that

1 1
/ Va2 = mdlog ~ + W(g, 2b) + (1), (4.17)
Q\U B,(bj) p

and Lemma 4.6 we know
1
IE(UE) S IE(UE) S 7Td10g g + W(ga Qv b) + d’YO + 011(5,0', p) + 052(0', p) + O‘3(J)7 (418)
and

lim ay(e,0,p) =0, lir(r)l+ az(o,p) =0, Uli)Ing ag(o) =0.

e—0t

The lower bound is obtained through another comparison argument. Denote

H a’j zha(x),o
|z — aj]

For p > 0 small, o > 0 small, fixing j, we know ., (z) = ( 229 6105 (@) O) on a disk around a;.

|z— aj|
Define

ue () if x € B,y(b;),
1+o)p—|x x| —
- H(L——ELJJMA@+JJ—£UA®> if @ € B(140)p(bi)\By(b;),
we ()= op op
, (1420)p—|z—b;|
. g @.b.+”7pJ 0, (z)—0,(b;)) )
<.’E aj|6 ( 5 (bs) (©;(x) 5 (bj )7(]) if € B(1+20-)p(bj)\B(1+o')p(bj)~
:n—aj

Here II(§) = é—‘ for ¢ € R3. From Lemma 4.6 we know

1 - - -
L) 2 5 [ VP +ndiog 2 +dro—i(e.0.0)~Falo,p) - Falo),
Q/’

and lim._q+ 31 (¢, 0,p) =0, lim,_q+ Ba(o, p) =0, lim,_g+ B3(c) =0. Here Q, = Q\ U;l:l B,(a;).
From Theorem 4.1 we know

1 . .
Ic(ue) > 5/ [V, |? +7Td10g§ + dyo — Bi(g,0,p) — Ba(o, p) — B3(0)
Qp

> mdlog = +W(g,2,a) ~ (e, ) ~ ol p) — B5(0) (4.19)

and lim._,o+ B1(e,0,p) = 0, lim, o+ B2(0,p) = 0, lim,_,o+ B3(c) = 0. Combining (4.18) and
(4.19), we get

W(g,Qa) < W(g,9Q,b) +1(e,0,p) +12(0,p) +73(0),
and lim._o+ 71(g,0,p) = 0, lim,_o+ 72(0, p) = 0, lim,_o+ ¥3(0) = 0. Letting e — 0T, p — 0T
then o — 07, we get W(g,Q,a) < W(g,9,b). This proves the first assertion in Theorem 4.2.
It follows from (4.7) and (4.10) that
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Now choose a p > 0 suitably small; it follows from Lemma 4.4 that

1
_2 (u2)2 + g/ |8Vu€|2d8 = g-/ ‘arug|2d8 + 2_p2 (u§)2 dS
€% JB,(aj) 0B (ay) B, (ay) e* JoB,(a;)

By Theorem 4.1 we know

1
lim —2/ (ug’k)2 = —g/ |0, u|*ds + g/ |0 u.|*ds. (4.20)
=00 €k JB,(a5) 0B, (ay) 9B, (ay)
On a small disk around a; we write u,(x) = (%eiei (@), O); under the polar coordinates we
know
2 27
p p 1
ELB (Wwﬁ—Wwﬁﬁk=g(/ (70+%@@@f—@@mww)w)
plaj) 0 P

2w

27 2
—rty [ @000 - [ (0.0,(5,0)7d0 =,
0 0

where we have used the Pohozaev identity for ©; in the last step. Hence via (4.20) one has

o1 312
1 f VB =

The latter fact, together with Theorem 4.1, implies

3 \2 d
(U’Ek) T 5(1-
2 3J
€L =

in the sense of distribution. The asymptotic formula of I.(u.) follows from (4.18) and (4.19).
The fact that |u2|g1) < c(g,9Q) follows from (4.8). The W'P-estimate for u. follows from
(4.12) and the Holder inequality.

5 Radial Solutions

In this section we shall study some special solutions of Equation (2.1). The study of these
solutions would be helpful in the understanding of the dynamics of vortices. First let us look

at the following boundary value problem:
2 (u3)2 u? iq0
—Au=||Vul* + S Ju— 3 on By, u(z)=(e"0) forx e dBy, (5.1)

where u € C* (3—1, 52), qeN.

Proposition 5.1  There exists a unique f = f. 4 defined on [0,1] such that f (0) =0, f (1) =
T and u = (sin f (r) e'?, cos f (r)) is a smooth solution to (5.1). In addition, f satisfies 0 <

F@<I, f(t)>0for0<t<1.

Proof Existence : Suppose u = (sinp (r) €'?’, cos p (r)). Then

I (u) = 7r/01 <rp’ (r)? + qr—zsinQp(r) + M) dr,

2
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and we call this functional J; (p). Set

V= {p\p € Hyye (0,1),/rp' € L* (0,1),%/) € L*(0,1) and p(1) = g}

Since

2r 2r
p 13 [ oty [ o0 - p0)lar

<c (/Tzrgdthr(/jrtp’(t)zdt)% ,

one has p € C'([0,1]) and p (0) = 0 for any p € V. Choosing a minimizing sequence for .J. in
V, say p;, then by the basic properties of trigonometric functions, we may assume 0 < p; < 7.
Since sinp; > 2p; > 0, one deduces sup; fol T (p;)2+ 1p? < oo, Assuming p; — f in H, (0,1),
then f € V and f is a minimizer. It must be smooth and it satisfies

1+ I, <l - q—2> sin2f _ (5.2)

T ez r2 2

This means the u corresponding to f is in H' (By,5?) and satisfies (5.1) in B;\{0}, hence on
the whole By by a standard removable singularity theorem for such equations.

Uniqueness : Suppose f satisfies (5.2) and f(0) =0, f (1) = §. We claim that 0 < f < 7.
To see this we define ¢ (t) = f (ee’) for ¢t € (—o0,log 1]. Then

. 1 -
o' (t) = (C]2 _ e2t) sinpcosp, p(—o0) =0, ¢ (log g) _ oL

(5.3)
Choose a to such that [ (t)| < F for any ¢ <ty < logg. Then either ¢ (t) > 0 for all ¢t < ¢
or v (t) <0 for all ¢ < ¢g. In fact, if this is not the case, then there exists a t; < ¢y such that
©(t1) = 0. From the uniqueness theorem of o.d.e. we know ¢’ (t1) # 0. If ¢’ (¢;) > 0, then
@ (t) <0 for t < t; and very close to 1; one easily deduces ¢ (t) < 0 for any ¢t < ¢; from (5.3).
Hence ¢” (t) < 0; this, combining with ¢’ (¢;) > 0, implies that ¢ (—o0) = —oo, which is a
contradiction. Similarly, ¢’ (t1) < 0 also leads to a contradiction. Let us assume ¢ (t) > 0 for
any t < to; then ¢ (t) > 0 for t < ty. We claim ¢’ (t) > 0 for any ¢ < log 1; then it follows that
0 < ¢ (t) < 5. Indeed if ¢ vanishes at some points, set t; = inf {t\t <log 1,¢’ (t) =0}. If t; <
log q, we see @ (t1) € (k‘ﬂ' + 5, km+ 7r) for some nonnegative integer k. By the choice of ¢; we
know there exist t3 <ty <ty such that ¢ (t2) = kn+73, ¢ (t3) = 2kn+m—¢ (t1). On [t2, 1], since
@' (t) > (¢* — €2) sinpcos p we get (¢)° — (¢2 — €22) sin? |y, > (¢)° — (67 — €*2) sin? gy,
Similarly we get (¢/)*— (q% — €e*2) sin® gy, > (¢')*— (¢% — €*2) sin® p|,. These two inequalities
imply ¢’ (t3) = 0, which is a contradiction. Hence t1 > logq, ¢ (t1) € (km,km + %) for some
nonnegative integer k. Similar arguments show that ¢ will be oscillating around kw with
decreasing amplitude after ;. Hence it would not reach 7 at log %, which again leads to a
contradiction. If ¢ (t) < 0 for t < tg, then the above arguments also lead to a contradiction.

Hence we dotain the claim. Setting ¢ (t) = 5 — ¢ (—t), ¥ = ¢!, then ¢ is a map from [0, %)
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to [— log %, oo)7 which satisfies

P () = (¢* —e ) (')’ sinzcos z, 1 (0) = — log %, ¥ (g) =00, ¢ > 0. (5.4)

Given two different solutions, say f1, f2, we may assume ¢} (log 1) > ¢} (log 1) > 0. Hence
¥4 (0) > 1] (0) > 0. We observe that when g > 11,

(2 =) (@) = (¢ — e (W) +vvf + (89)°) (W — ¥l)sinzcosa.  (5.5)

Thus we get ¢4 > ¢} on [0,%Z), ¥2 > t; on (0,3). Choose an o € (Z,Z) such that ty =
Vo (@) > ¥y (@) = t1 > —log q. Defining ¢y (t) = ¢y (t — to + t1) for ¢ > t,, then
O (1) = (e720tnr) — g2) 2015 (e - g2) TR20L (5.6)
2 2
Since ¢4 (t) = (e — ) sin da cos o, d1 (t2) = b2 (t2) = @, & (t2) > h (t2), we deduce
1 (t) > 2 (1) for t > ty. Hence 61 (£) = ¢4 (£) = &4 (t2) — @5 (t2). &} (1) = ¢} (t2) — 0 (t2) > 0.
The last statement contradicts the fact that ¢, (£) — £ as t — oc.

2
The main point in the above proof of uniqueness is to consider inverse functions. In fact,

v

Equation (5.3) corresponds to a pendulum with changing gravity, 2¢ corresponds to the angle
between the pendulum and the upward vertical line. The reason for considering inverse functions
becomes clear after looking at this model. These types of equations also appear in the study of
equivariant harmonic maps. One may refer to [20], for example.

Now we go back to the equation
—Au = (|Vu|2 + (u3)2) u—u’es, (5.7)

on the whole plane for u € C*° (R?, S?). For ¢ € N fixed, if u = (sin f (r) €', cos f (r)), then
Equation (5.7) changes into

wo q2 sin2f -
f +7+(1—r—2) 2 =0. (5.8)

To avoid the singularity at 0, we set ¢ (t) = f (e?) for t € R; then,

¢" = (¢° — ") sinpcos . (5.9)

Proposition 5.2  There exists a unique f = f, defined on [0, 00) such that f (0) =0, f(c0) =

Z and u = (sin f (r) €% cos f (r)) is a smooth solution to (5.7). In addition, f satisfies 0 <

J@t)<%, f'(t)>0 fort>0.

Proof Existence : We look at (5.9) under the additional conditions ¢ (—o0) = 0, ¢ (c0) =

%. For any a € R, by Proposition 5.1 we have a ¢, defined on (—oco,a] such that ¢, =

(¢ — €*') sin, cos @q, Ya (—00) =0, @4 (a) =5, 0 < p, < Z. We also know 0 < ¢, (t) < 7,
¢! (t) > 0 for t < a. From the bounds on ¢, and the equation it satisfies, we deduce that any

order derivatives of ¢, are uniformly bounded for a large on any finite interval. Hence we may
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find a; — oo such that ¢,; — ¢ in € (R). The limit ¢ satisfies (5.9) and 0 < < 7, " > 0.

Next we want to show ¢ is nontrivial.
Claim 5.1  There exists an « > 0 such that ¢, (logq) > a for a > ag = log 2q.

Proof of Claim 5.1  If this is not the case, then assume ¢, (logq) < « for some « > 0 small,
and a > log2q. Since ¢!/ < ¢?sinp, cosp,, we have (<pfl)2 — ¢®sin? ¢, is decreasing and
hence (¢))? < ¢®sin® o ¢ (logq) < gsina < qa. @q (ag) < o+ qa(ag —logq) < ¢(q) a.
From ¢/ < —3¢2sin ¢, cos @, for t > ag we know () + 3¢2sin® ¢, is decreasing, so 3¢% =
(1) + 3¢%sin® ala < (¢,)° + 3¢%sin® @ula, < ¢(q) a?, which gives a contradiction when « is

small enough.
Claim 5.2  There exists a 3 > 0 such that ¢, (logq) < § — 3 for a > ag = log 2q.

Proof of Claim 5.2  Suppose ¢, (logq) > § — 3 for some a > ag and $ small. Denoting
v = ¢, (logq), then ¢ (t) > v —c(q) B for logq < t < ag and hence 8 > c(q) (v —c(q) B)"

which implies v < ¢(q) 3. ¢a (log2) > Z —c(q)v > F —c(q) 3, but for t < log 2, ¢l (t) >
% sin ¢, cos 4. Hence (@Q)Q—% sin? @, is increasing. 0 < (@Q)Q—% sin? Pallog g < v2—c(q),
and this implies 1 < ¢(q) 3% which can’t be true when 3 is small enough.

Now by Claim 5.1 and Claim 5.2 we obtain a < ¢ (logq) < 5 — 3, hence ¢ is not a

constant function. We deduce that ¢’ > 0,0 < ¢ < 7, ¢(—00) = 0, ¢ (00) = 5. It follows
from the comparison function in Lemma 4.5 that ¢ exponentially decays at —oo, hence by a
direct computation we see u = (sinf (r) e'1? cos f (T)) has finite energy on Bj. Finally by the
removable singularity theorem we know w is a smooth solution of (5.7).

Uniqueness : First we observe that the arguments in the uniqueness part of Proposition
5.1 tell us 0 < f < 5 for any f which is a solution to the problem. If we have two different
solutions, say fi1, f2, then we have the corresponding @1, po. If there exists a tg € R such
that ¢1 (to) = @2 (to), we may use the proof of the uniqueness part in Proposition 5.1 to
get a contradiction. In fact, one only needs to replace (—oo,log 1] by (—oc,tp]. Without
loss of generality, we assume @3 > ¢1. Choose a € (F,%) such that 05 () > loggq, set
t1 = ;' (a) > ¢3! (@) = to. Define @o (t) = o (t — t1 +to) for t > t;. Then

oy (t) = <q2 — 2+t *tl)) sin @ cos Ga > (¢° — €*") sin @ cos @s. (5.10)
Since ¢/ (1) = (¢ — &) sin g1 cos o1, B2 (h) = g1 (1) = @, we get 9} (t2) = & (t1) < ¢ (t1).
In fact if G’ (t1) > ¢} (t1), then by the Taylor’s expansion formula we would have @y (t) > 1 (t)
for t > t; and very close to t;. But when @2 > 1, we have @J (t) > ¢ (t), thus one deduces
that @g (t) > @1 (¢) for t > t; and @} (t) — ¢} (t) is strictly increasing. It contradicts the fact
@5 (t) — 0, ¢} (t) — 0 as t — oo. Now the fact ¢4 (t2) < ¢} (t1) and the arguments in the proof
of the uniqueness part of Proposition 5.1 (especially (5.5), (5.6)) give us another contradiction.

We will study the stability properties of those solutions given in Proposition 5.1. For degree

1 solutions, we have:

Proposition 5.3 If q =1, then the radial solution given in Proposition 5.1 is strictly stable,

hence a local minimizer.
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For higher-degree solutions, we have:

Proposition 5.4 If g > 2, then for 0 < ¢ < €(q), the solution given in Proposition 5.1 is

unstable.

Here we basically use the idea presented in [9]. Some preparations are needed. First, we

would like to establish some qualitative properties of the function f in Propositions 5.1 and 5.2.

Lemma 5.1  The function f in Proposition 5.1 satisfies f € C* ([0,1]), f® (0) = 0 for
0<k<q—1and f9(0)>0.

Proof Define a function g on [—1,1] by setting g (r) = (=1)? f(—r) for —1 < r < 0 and
g(r)= f(r) for 0 <r < 1. It follows from the proof of Proposition 5.1 that g is smooth, hence

f is smooth on [0, 1]. By using the Taylor expansion in (5.2) we get the conclusion.

Lemma 5.2  The function f in Proposition 5.2 satisfies f € C™ ([0,00)), f*) (0) = 0 for
0<k<qg—1, f9(0) >0 and =1 O exponentially decay at oo, for any | € N.

Proof The proof of the first part of Lemma 5.2 is exactly the same as in Lemma 5.1. The
exponential decay property follows from Equation (5.9) and a comparison argument using the
function in Lemma 4.5.

We note the method in the above proof is the same as that in the proof of Lemma 2.2 in
[21], which is the first step for the shooting method.

By scaling we may assume the parameter ¢ = 1, but the domain changes from the unit
ball to the ball with radius R = % To employ the arguments in [9], we use the stereographic
projection I' as defined in (4.1). Given a map u : Br — S2\ {(0,0,—1)}, denoting v = 't o,
then

I (u) = %/B (|Vu|2 + (u3)2) dz = /B ﬁ <|Vv2 + W) de.  (5.11)

We call this functional J (v). Then for any w € H} (Bg,C), we have

w2 v, w v w 02w2
PRTE Y g W 1L L\

(14 [o[?)” (1+ 02 (14 [o[?)°
1 _ 2 2 12 2 2 4 2 _ 2 , 2
(1= pP) ‘f' L L2Vel,w)” Chal ) <U4w> dr.  (5.12)
(1+ [v[?) (1+|v[?) L+ [ol?)
Note that the solution in Proposition 5.1 corresponds to v = p (1) €’ where p = tan @ and
it satisfies ,
/ 2 /2 2 1— 2
B G R/ <q r) —L -0 (5.13)
(1+p?) (1+p%) r (1+p%)
(5.13) is equivalent to
20,0/2 pl q2 1— p2
= - — - -1 . 5.14
=1t p? HANE 1+ p2p (5.14)

By Lemma 5.1 and Proposition 5.1, p has the following properties:

peC®([0,R]), p®(O)=0for0<k<qg—1, p9(0)>0, (5.15)
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and

0<p(r)<1l, p'(r)>0for0<r<R. (5.16)

We shall need the following elementary lemma later:
Lemma 5.3 1r2p? +12p"2 — ¢%p? is a strictly increasing function in r. In particular, rp? +

2 2
rp’Q——qu > 0.

Proof Denote 1 (1) = r2p? +12p"? — ¢*p%. By Equation (5.14) we obtain

4pp’ 4pp’
V) =y st () 2 2 e ), (5.17)

which together with 1 (0) = 0 implies ¢ (r) > 0. Going back to Equation (5.17), we conclude
that v is strictly increasing.

From Proposition 6.2 and Lemma 5.3, we may deduce that the radial solutions u.q =
(sin fe q (1) €'7%, cos f. 4 (r)), where f. 4 is the function in Proposition 5.1, satisfy u. , — (0,0, 1)
in C* (B1) as ¢ — oo for any fixed € > 0. Moreover, |uc 4 — (0,0,1) B,y = O (%), for any

€ (0,1). Indeed, the quantity 72 f2 + r2f’? — d?f? (see formula (21) in [9]) could be used to
give a simple proof of Theorem 2, Part (b) in [9].

Now we proceed to the proof of the stability of degree 1 solutions. We follow closely the

method in [9]. In contrast to the second variation formula in [9], formula (5.12) has additional

first-order terms.

Proof of Proposition 5.3 Denote @ (w) = J” (v) (w). To show Q (w) > a\wﬁfl(BR ¢y for some
0 s
a > 0, we only need to show @ (w) > 0 for any w # 0. Indeed if this is the case, set

o =inf{Q(w)\w € H} (Br,C), lwluyp,0) =1},

a > 0. If a = 0, then there exists w; € H} (Bg,C), Wil (Br.c) =1 and Q (w;) — 0. We may
assume w; — w in H} (Br,C), then Q (w) = 0. This implies w = 0, w; — 0 in L? (Bg). Since
Q (w;) — 0, it follows that [, (5&1‘)2
be positive. Now for any w € H} (Bg,C), we write it as

dx — 0, and we obtain a contradiction. Thus « must

w= Z an (r)e™?; (5.18)

then

1
oy . |w|? = Z/ rlan (r) [2dr. (5.19)

nez

% B Vol = Z/ < +*\an( )|2) dr. (5.20)

ne”Z
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_<27’(p +7_2) ( )>|a |2
(1+p2)3  (14p2)3)7"

3ro* (P2 + %) | (2 - p?) _
(i + e asen

2rp
(1 +p

+
r

By integration by parts and using Equation (5.14), noticing also that the quantities in (5.19)

and (5.20) are finite, we get

Siﬂcz(w:/f

2Zlnl2

) (alJrn +a1 n

=/
al—n + a’l+n)

L1 =n)ar + (1 + n)aHn))]

r(+ 027 Z”QM"‘Z

nez nez
2r (p’2+¢—z> :
(1+ 2)3 Z|a |
P nez
2(7’[)2+7‘p,2+pr—2+#> s}
o 24Re @)+ 3 loran + @1
n=1
i (Z 4 e (d) i
- nla,|” + Re (af) + 2 Re (a1-naiin) | |dr
7“(1 +P2) nez n=1
R 2
4az| 2
> / a2 + an]
o [Tr e 2 T e T
% (p’2+¢—z> :
(1+p2)° Zlanl
P nez
2(rp +rp?+ & +2”) %
! L 3 loran + a1
4 (rp2 +rp? ”—) 82
o |Re<a1>|2f%(|a2|2+Re<aoa2>) dr
(14 p%) r(1+p?)
R 2
4|CL2‘
> [ |G Sl S 2 laal®
0 en r(1+p ) n#0,2

2r (PIZ + %) r (1 — p2)

(1+p2)°

2 4
+2(rp2+rp’2+p7+2%)

(1+p2)°

(1+p2)

D lanf

o0

Z |al+n + alfn‘2
n=1
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_ 'r‘(lg:—#[ﬁ)g (Jaz|® + Re (apas)) 1 dr. (5.22)

1
where we have used Lemma 5.3. Set bg = ag,b; = (Zn?fO,? |an|2) : ,ba = as. Then

1 Rrb’2+b’2+b’2 b2+4b2
Loy ["[FUHELIE LI | b+ iy
8m 0 (1+ p2?) r(1+ p?)

2 (7 +5) (- p?)

)P ! (1+p2)° (o a1l
2(rp2+rp’2+§+2%,4 B
+ 5 bo + ba|?
(1+p?)
8p° 2
Define
R /2 2 2r p’2+f—z 1 p2
Ql(bl):/ alut 5+ 1] 5 — ( 3> +r( pg) |b1? |dr.  (5.24)
o |@+p)" r(1+p?) (1+p?) (1+p%)

We want to show for any real-valued nonzero b, € HL_((0, R]), if fOR (r|b'1|2 + %) dr < oo

and by (R) = 0, then @4 (b1) > 0. To do this we need the following:

Lemma 5.4 v =p(r)e? is the unique minimizer for J in the class
E={t\v=g(r)e”, 7€ H" (BgC), g(R)=p(R)=1}.

Proof We see there is at least one minimizer by the direct method. For any v in £, we have

R ey o (= 1g?)’
J(v)—47r/0 (1+g|2)2<|g+r2+ 1 dTZJ(|g(r)|e )

If ¥ is a minimizer, then so is |g|e’®, and hence |g| satisfies (5.14) with p replaced by |g|. By
considering 2arctan (]g|) and using the uniqueness part of Proposition 5.1 we know |g| = p.
|/2

But if g = |g|e’¥, then we have |¢'|? = |g|"? + |g|?|¢’|?, hence g = p, © = v.

Lemma 5.4 yields

1 o
Q1 (b)) = 8_7TJN (v) (zble 9) > 0.
If for some nonzero real by, Q1 (b1) = 0, then
/
/ 2 /2 1 1— 2
3 rby ) - rp b13 Y 7'0351 -0 (5.25)
(1+p%) (1+p%) T (1+p?)

Note also by (0) = by (R) = 0. Multiplying equation (5.25) by p and equation (5.13) by by, after

integration by parts we get b (R) = 0, which implies b = 0, and we obtain a contradiction.
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Hence @ is strictly positive. To deal with the remaining part, we define

4bo|?

Q (b b)—/R 4(‘b/|2+|b/|2)+7
2(b0,02) = | 1127 o 2 r(L+ p2)°

() )
(102" (1+p%)°

(1bol? + [b2%)

2<rp2+r,0’2+pr—2+¥ _ )
(1+p?)* ot bl
8p?

Ty (e )

_|_

dr. (5.26)

Another equivalent form for Qs is the following:

2 2 p
r rp° +rpT — —

(14p%)° (142"
2% (o427 —1) 2! bo?
- 0
G At ()

2 2 12 r 4+2 2_1 4724
+<— LA (0" +2p )+ d = | 1622 dr. (5.27)

4
(I6o]* + 1b31%) + ( )Re(bobg)

R
Q2 (bo, b2) =/
0

A+, (q+) (it
For real-valued by, by, we denote

Q2 (bo, b2) = Q2 (bo, —b2) . (5.28)

Then from Lemma 5.3, we know

Q2 (bo, b2) > Q2 (|bol, [b2]) -
Set
~ R
m = inf { Q2 (bo, b2) \bo, b2 € Hy, (0, R],R) by (R) = bs (R) = 0,/ r(bg+b3)=1p.
0
If by, by are minimizers, then we may assume by > by > 0. In fact, one simply replaces by by

max{|bol, |b2|} and by by min{|bg|, |b2|}; the value of Q5 decreases under this process because
of (5.26), (5.27), (5.28) and Lemma 5.3. The minimizers by and by satisfy

li
b/ 2 2 12 r 4+2 2_1 24
mrbo__<(r70)2> +<_ e ettt -1) 2y b,

1+ p? (1+p%)° (1+p2)° r(1+p2)"
2
2 (rp2 +rp? — pT)
- — b, (5.29)
(1+p?)
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!
b/ 9 2 12 4+2 2_1 4_24
by = — (") (o2t e 2t o) o),
(1+p?) (1+p%) (1+p?) (14 p?)
2 (rp2 +rp? — é)
(1+p2)*

bo. (5.30)

IfwedeﬁneA:@EO,B:%EO,then

mrA(( rd )2>/+(27‘(1—02)0/2+T(P4+402—1) . 2(1_p2)>A

ey L+ 07 Q) )

2(p* -1
N )3B (5.31)

/ ! 2 1— p?
mrB = — LQ + |- 2rp 3_7“( p3)+ 2 3 | B
(1+p%) (T+p%)" (140" r(1+p?)
A

2(p? -1
(—2)3 (5.32)
r(1+ p?)
Denoting Ay = p’ > 0, By = 2 > 0, then
i
A N 2r(1—p2)p'2+r(p4+4p2—1)+2(1—,02) 4
(1+p%)? 1+p2)" (1+p?) (1+p2)"
2(p? -1
N ((19+ o B (5.33)
r(l+p
o rB; /+ 2 r(1-97) 2 B
(1+p2)? 1+ 1+ )
2(p? -1
(v A (5.34)
r(l1+ ;)2)‘3

Multiplying (5.31) and (5.32) by A; and By, respectively, and multiplying (5.33) and (5.34)
by A and B, respectively, then after integrating by parts, we get —m fo r(AA; + BBy)dr =
T (A (R)A'(R) + B (R) B’ (R)) .

Observing A and B reach a minimum at R, we get m > 0. If m = 0, then A’ (R) =
B’ (R) = 0. The latter fact together with (5.31), (5.32) shows A = B = 0. Hence by = by =0,
we obtain a contradiction. Grouping the above two results together, also using (5.23) we get
Q (w) > 0 for any w # 0. Finally to prove u is a local minimizer, we only need to observe

I (@) = I (@',4?,]a3|) and the continuity of the map which sends @ to (a',a?,|a3|).

Proof of Proposition 5.4  Suppose q > 2. For each R > 0, we have

UR = (sin f#q (%) eiqe,cos f%ﬂ (%)) , u= (sin fq () eiqg,cosfq (7")) ,

vp=T"tour=pr(r) e’ v=T"Tou=p(r)e.
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Here T is the stereographic projection defined in (4.1) and f 1 fq are the solutions in Proposi-
tions 5.1 and 5.2 respectively. From Proposition 6.2 we know for any Ry > 0, SUP| 4| < Ry, R> Ro+1
|V ug (z) | < ¢, where ¢ is an absolute constant. Following the proof of Proposition 5.2 one gets
up — u in C* (R?,5?). Hence for any w € H* (R?,C) with compact support, J” (vg) (w) —
J" (v) (w) as R — oo. To establish the instability, it suffices to find a w € H' (R?, C) such that
J" (v) (w) < 0. The idea for choosing such a w is from [22]. We take

_ (£ a0 (PP a0,
roor2 ror? ’

by Lemma 5.2 we see p = tan f—; satisfies (5.14) and
peC®(0,0), pF(O)=0for0<k<g—1, p@(0)>0. (5.35)
Moreover,
0<p(r)<1, p'(r)>0forr>0,1—p, pl exponentially decay at co, [ € N. (5.36)

From these we conclude that w € H' (R?,C). Plugging v and w into (5.12), using (5.14), (5.35)
and (5.36) we get

/

L, _ o [T2e=p")r
oo @) (w) = /O 7r2(1+p2)3d <0. (5.37)

This completes the proof.

6 Quantization

In this section we shall study the solution of Equation (5.7) on the whole plane for u €

Cc= (Rz, 52) satisfying certain growth conditions.

Proposition 6.1  Suppose u € C* (Rg,SQ) satisfies (5.7) on R?, u® — 0 as |z| — oo and
there exists ¢ > 0 such that

/ (\Vu|2 + (u3)2) <clogr forr>2. (6.1)
B,

Then fRQ (u3)2 = wd?, where d is the degree of % at oo, u' = (ul,u2). Moreover,

|D*u? (2) | < e(k,u)e el ¢ >0, c(k,u) >0, foranyk >0,

¢ (k,u)
||

|DFu ()| < fork > 1.

If we write u' + iu® = pe'(@+¥) outside ball Br,, then |V ()| = O (ﬁ)

We note that those radial solutions given in Proposition 5.2 satisfy all conditions in Proposition
3)2 2
6.1 and [, (u®)” = mq?.

Proof of Proposition 6.1  We start with the following:
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. 2
Claim 6.1 [, (u%)” dz < 0.

Proof of Claim 6.1 Denote ¢ faB {|Vu\2 + (u3)2] ds. For r > 4, we have

clogr Z/B [IWI2 + (ugﬂ dx = /0 é(p)dp

" ¢(p)p ,
———dp > - logr inf  po(p),
vr P Vr<p<r ()

hence inf /- ,<, pp(p) < 2c. We may find a sequence r; — oo such that r;¢(r;) < 2c. From

Lemma 4.4 we know

/ (u3)2 + C/ |0, ul*ds = C/ |0, ul*ds + z/ (u3)2ds. (6.2)
B, 2 OB, 2 OB 2 OB

r

Hence

which implies [, (u3)2 dr < ¢ < oo.

By assumptions, we may choose Ry > 0 such that [u®(z)| < 1 on R?\Bpg,, then v/ =

ul +iu? = pe'¥, where p = |u/| > \/_, © = df + 1, d being the degree of u'/|u’| at 0o, 1) being
a single-valued smooth function on R?\Bp,. Computation shows div ( 2Vg0) =0.

Claim 6.2 [p., 5, |VU|* < o0.
0

Proof of Claim 6.2 Denote Agr = Br\Br,, Vr = 525 faBR . Then

/ p* (VO + V) - Vi = div (¢p*Vy)
Ar

AR

A A R

Here we use the fact that [ 9Bn p2g—1ﬁds = 0, which results from

50
/ 0> wds = / u x Oyu'ds = / div (v’ x ', v’ x dau’) dx = 0.
ov
SBR OBR BR

Since faBr V0 - Vipds = 0, we get

/ PV <
AR 8BR

By the Holder and Poincaré inequalities we have

0 d
Sl vrlas+ [ (=) Swul+ o

Sl vnlas < [ (vupas

aBR 6BR

and

1

o= S 2 ([ (u3)“)% (f woe) <cw ([ |v¢|2)%
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It follows that
/ Vi|* < coR/ |V2ds + c(u).
AR 8Br
Since fAn |V9|? < c(u)log R, by choosing a generic R we get fRQ\BR V| < c(u) < .
1 0
Claim 6.3 [, |[Vu?|? < cc.

Proof of Claim 6.3 In fact, multiplying the third component’s equation by u? and integrating
by parts we get

312 ¢ (u)? = 24 (u3)?) (u3)? Xl —/ 300
/AR|VU| + (u®) —/AR(|Vu +(u)>(u) +/8BRU 8yd8 BBROU 6Vds.

Hence

1*2<“3)2 312 3\2 3\2 2 2 5 Ou? 5 Ou?
ARw|VU|+(U)—AR(U)pv¢| +/ UEdS—/ OUEdS

2d2/ 312 / 2 5 0u? ou?
< — u’)” +2 Vi —l—/ U —ds—/ ud——ds
RY Jue ( ) AR V¥l oB, O 0Bk, v

1

< c(u) + (R/ |Vu3|2d5> .
dBr

Choose R; — oo such that R; [, |Vu?|*ds < 2c is independent of j, then [p, [Vu?|? < c(u).
For p we have ’
3)2 32
u’)” |Vu
3
RQ\BRO Rz\BRo 1 - ('LL )

d’p?>  2p2do;
er 220y
T T

One observes that

|0-4' 1 = |0-p]* + P2 (0:0), |0 |* = (Bup)® + p* (B,0)°.

Also by (6.2) one sets
| @) =nam
B,
where
%
IR| < e(u) <r/ (|Vp|2 + |V 2+ VP + (u3)2) ds + <r/ |V1p|2ds> ) .

0B, 9B,

Using the fact that fRQ\BR Vo2 + |V |2 + [Vu? |2 + (u3)2 < 00, we may find r; — oo such
0

that

rj/ (IV62 + V6P + [V + (u)?) ds — 0,

0B,

Hence [g» (ug)zdm = md®. Next we look at e(u) = 3 {|Vu\2 + (u3)2]. Fixing an z, letting
R = |z|, for § > 0 small, R > 2Ry, we have

/ va = | IV + [V + 21V (A8 -+ ) P
Bays)r\B-s)r Bays)r\B-s)r

1+9
+/ |Vu?|? + |Vp|? + 2| VY2
Bat+syrR\B@1-s)r

< dxd? log 5



Static Theory for Planar Ferromagnets and Antiferromagnets 575

. 2 . .
Since fR2\330 [Vu|? + [Vp|? 4+ 2|Vy|? + (u?)” is finite, one can make fB(lJrS)R\B(l—S)R e(u)
arbitrarily small if one takes R sufficiently large and § sufficiently small. Using Lemma 2.3 and
Lemma 2.4 on Bsg(z), we get e(u)(z) < %Y. Hence |Vu(z)| < C‘(;l). Next we let Ry be large

EIE

enough such that for |z| > Ro, |Vu(x)* + (u3(m))2 < 3. Then from the third component’s

equation and the comparison function in Lemma 4.5 we get that u3(x) exponentially decays at

infinity. The estimate of |[Vu3(x)| follows from the standard elliptic estimates. By scaling, the
Schauder theory, and induction we get the estimates for |D*u| and |D*u?|. We note that
satisfies

2Vp -V

A = — =f onR?*Bg,, (6.3)

where |f (z)| < ¢(u)e *l. Consider the Kelvin transformation of ¢ defined by o (z) =
w<‘ |2) forscGBl ; then

8= Fon B o), F@ =t () ) w0R= [ P cs @

We also have |Vi(z)| = ﬁww(#ﬂ Since |f(z)]| < e T — 0 as 2 — 0, from the

! ]
removable singularity theorem we get ¢ € C! (By) and |V (2) ] = (\x|2
Remark 6.1  Suppose we have a u € C* (R?, 5?) satisfying (5.7) and [g. [Vu|? < co. Then
u must be a constant which is equal to (0,0,1) or (0,0, —1) or a point in S*. In fact, we may
get an L* bound of Vu by Lemma 2.3 and Lemma 2.4. Multiplying the equation of the third

component by u3 and integrating by parts we get

/ |Vu?|? + (u3)2 = / (|Vu|2 + (u3)2> (u3)2 +/ w3, ulds
Br Br OBr

By choosing a sequence of generic R’s which goes to oo, one can obtain

/R2 ()’ (1 (@W)?) do < oo.

This last statement and the gradient bounds implies either [p. (u3)2 de or [o,(1 — (u*)?)dx
must be finite; now by using (6.2) for a generic r, we get the conclusion.
The next proposition shows any smooth solution of (5.7) with an image in the open upper

half sphere satisfies the gradient estimate.

Proposition 6.2  Suppose u € C* (E, 5’2) satisfies (5.7) on By, u® > 0. Then either u® = 0

or [Vu (x)] < l%m for x € By, where c is an absolute constant.

Proof Suppose the proposition is false; then we might find a sequence u; € C* (E, Sz)
satisfying (5.7) on By, u > 0, u} not identically zero and

K; = sup (1 |a]) [V, (2) | = oc.
r€eBy
3

By Harnack’s inequality one has uj

—A+ (1= (|Vu,|* + (u})?)) on B, with the Dirichlet boundary condition is positive, for any

> 0 in Bj, hence the first eigenvalue of the operator
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0 < r < 1. This implies that for any ¢ € C° (By),
3\ 2
[ vtz [ (9P o+ )) (6.5)
1 1

Choose z; € B; such that K; = (1— |z;]) |Vu; (z;)|, put o; = 1 — |z;|, define v; () =
u; (xj + %m) for z € Bg,. Then

2 (,3)2 2,3
g7 \U5 [oary v
7A’Uj = <|V’Uj|2+ J ( j) >’Uj J J63 on BK

3?

Vv (z) | < P

Hence ‘Ujlcl’“(B_r) < c(a,r) for 0 < a < 1, r > 0. After passing to a subsequence we may
assume v; — v in C*° (R?). Then v € C* (R?,S?) and

—Av=|VvfoonR? |Vo(z)| <1, v*(x)>0, |Vu(0)|=1.

By Lemma 3.2, v(z) = (ei(c‘)“lzl“ﬂz),O), co, €1, Co being real constants with ¢2 +¢2 = 1. On

the other hand, by choosing a suitable ¢ in (6.5) we have, for any R > 0,

/ |Vv;|? = / |Vu;? < c+c—gR2
Br o R(a: K

j
Kj

where c is an absolute constant. Letting j — oo, we get fBR |Vo]? < ¢, hence mR? < ¢ for any
R, which is a contradiction.
For the gradient estimate up to the boundary, we have the following proposition which in

fact deals with more general solutions than Theorem 3.1:

Proposition 6.3  Suppose Q C R? is a bounded open domain with smooth boundary and
g:0Q — S' is a smooth map. If u. € C™® (ﬁ, 52) satisfies (2.1) and u3 > 0 in Q, then for
0 <e<ey(g,Q), we have [Vue (z)| < @ for x € Q.

Proof Suppose to the contrary that there are a sequence €; — 0, and a sequence u; = u;,
solutions of (2.1) such that u? > 0 in Q and that

K; =¢;sup|Vu; (z) | — oo.
zeQ

Then the eigenvalue argument in Proposition 6.2 implies, for any ¢ € C° (Q),

[ reu+ E] z/ <Vuj|2 + (“3)) v2 (6.6)

Choose z; € Q such that K; = ¢;|Vu; (z;) |, define Q; = ]g—j (Q—x;), vj (x) = u, (xj + %x)
for z € Q;. Then

3)2 3
—Avj = | |V, |* + (Uj) % ey on Q Vo (2)| <1, |Vo; (0)]=1, v?>0
7 J sz K2 3 J» J =5 J =L v 22U
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If Q; — R? then |Uj|cl,a(B—T) < c¢(a,r) for 0 < a < 1, r > 0. Hence after passing to a

subsequence we may assume v; — v in C*° (R?). Then v € C* (R?, S?) and

—Av=|VufoonR? |Vo(z)| <1, |Vu(0)|=1, »*(z)>0.

We deduce from Lemma 3.2 that v (z) = (ei(co+clxl+02w2),0), o, C1,C2 being real constants

such that ¢? + ¢ = 1. On the other hand, by choosing a suitable v in (6.6) we have, for any

R >0,
R2
/ |ij|2:/ |Vu;? < e+ e—.
Br Bej (x5) K;

J
Kj

Letting j — oo, we get fBR |Vu|? < ¢, hence we obtain a contradiction. If Q; — H, H is a half
plane, after rotation we may assume H = {z\z € R? 2% > —a} for some a > 0, then vj — v
in C* (ﬁ) veC® (ﬁ, 52) and v|py is a constant in S1. Since v is a smooth harmonic map
from H to S2%, v > 0, [Vu(x)| < 1 and [Vv (0)| = 1, and due to (6.6) we get, for any ball
Br (x0) such that Bag (z9) C H, we have the estimate

/ Vo2 <e. (6.7)
BR(wo)

Here c is an absolute constant. The Hopf function ¢ = |91v|* — |02v]? — 2i (1v - Oov) is
holomorphic and bounded, Im () = 0 on 0H, hence ¢ = const. But from (6.7) we know
fBR(:r:o) |o] < ¢ for any Ba, (z9) C H, which implies ¢ = 0. Hence dav = 0 on 0H. v = const
by the uniqueness of the Cauchy problem. This contradicts the fact |[Vv (0)] = 1.

Proposition 6.4  Suppose u € C* (RQ,SQ) satisfies (5.7) on the whole plane, u® > 0,
lim inf|g o0 [Vu(z)| =0, [p. (u3)2dx < oco. Then either u®> =0 or

WP @) < (e #, [Vu(@)] < e, [Vu(x) < L, / (u*)? da = md?,

where d is the degree of % at co with, u' = (ul,u2).

Proof 1If u? is not identically zero, from Harnack’s inequality we know u® > 0. Proposition
6.2 tells us |[Vu (z) | < c. This and the fact that [p. (u3)2 < oo imply u? (z) — 0 as |z| — oo.
Hence one has |Vu? (z) | — 0 by the elliptic estimates.

Claim 6.4 [, |[Vu?(2)[*dz < cc.

Proof of Claim 6.4 In fact, from the third component’s equation we get
0
/ |V |? + (u3)2 = / (u3)2 <|Vu|2 + (u3)2) +/ w3 ds
B, B, op, OV

Sc/Rz (u3)2—|—c<r/aBr (u3)2ds>%.

Choosing a generic 7, we get [p. [Vu?[* < ¢ [o, (u‘j)2 < o0.

Consider the Hopf function ¢ = (|0ul* — |92u|?) — 2i (d1u - Ozu). Then 9o —

8(u3)2
oz :
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: L, o)
Claim 6.5 |— * =5 (z)| — 0 as |z| — oo.

Proof of Claim 6.5 Fixing a positive number rg, then for |x| > rg, we have

L o) L[ (o) 50y
e 0| = L Te | e 1659 o
< clw) +ero sup | (W?Vu?) (z —y)|.
To YyEByr,

Letting |z| — oo then 19 — oo, we get Claim 6.5.
a(u?)? . . .
Now ¢ — Wl—z * (;Z) is holomorphic and bounded, so it must be a constant. From the

L, o)

condition liminf|;| o |[Vu(z)| = 0 we know ¢ = — + =5~ and ¢ — 0 as |z| — co.

Claim 6.6 |Vu(x)| — 0 as |z| — oc.

Proof of Claim 6.6  Choose any z; — o0, let v;(x) = u(z; + x). Then after passing to the
subsequence v; — v in C*° (R2), then v € C* (RQ, 5’2) and

—Av =|Vu]?v, v*(z)=0, |Vou(z)<ec.

Hence v(z) = (eicoters’+e22) ) From |01v;(2)|? — |02v;(z)]? — 0, O1vj(x) - avj(x) — 0,
we know [01v(x)|? — |Gav(x)|* = 0, O1v(z) - O2v(z) = 0. Thus ¢ — 3 = 0, cic2 = 0, and
consequently ¢; = ¢ = 0. Hence v is a constant map and we get Claim 6.6.

Claim 6.7 |u?(z)| < c(u)e~ 5.

=

o)

Proof of Claim 6.7  Choose rg > 0 such that [Vu(z)|> + (u3(:€))2 < 3 for |z| > ro. For any
|x| > 2rg, we have

on Bz (z).

Z

—Au® + (1 — |Vul® - (u3)2> W =0, 1-|Vuf - (vf)° >

1 =

. . oo . la| .
By comparison arguments, using the function in Lemma 4.5 we obtain |u?(z)| < e~ 1. This
proves Claim 6.7.

We note elliptic estimates imply that |[Vu3(z)| < c(u)e_%.

; _ L, o)’ c(w)
Claim 6.8 |p(2)|= | * =57 (2)| < for x| > 1.

Oz |z|?

Proof of Claim 6.8 Let R = |z|. By the decay property of u® and |Vu3| at oo and

10 (u?)? 10 (u?)? 17, 502
—* o, ("T)_/BE@ P (m_y)d“/agﬁw_yf_%(u) (z —y)ds
B / (@) @y,
R?\B g Tyt +iy?)®
one gets
1 0(u?)? _r clu c(u
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This proves Claim 6.8.

Claim 6.9 There exists a ¢(u) > 0 such that |Vu(z)| < C‘(;‘) for |z| > 1.

Proof of Claim 6.9  Choose x; — oo, let r; = |z;]. Define vj(z) = u(x; + Fx) for x €
Bi. Then
r? 2 r? 7y
—8v; = | Vo + 5 ()" | oy = Jofes, (@)l < e(w)e™ on Br.

Let Kj = supj,<; (1 —[2]) [Vv; (z)[. We claim that K; remains bounded. Otherwise, one
would have a sequence of K; — oo, and a sequence of points y; € B; such that K; =
(I —y1)|Vv; (y;) |- Denote o; = 1 — |y;|, and define w;(z) = v;(y; + Z—ij) for z € Bg;.

Then
2 2,.2

2, oy a2 airs .
—Awj = | [Vw;[” + 4]K2 (wg) wj — ﬁwje?)v
j j
1 U
V()] < ER [Vw;(0)| =1, |wj(z)| < c(u)e™ .
K

Thus |wj|cl«a(B_,.) < ¢(a,r) for 0 < a < 1, 7 > 0. We may assume w; — w in C*° (R?); then
we C™® (RQ,SQ) and

—Aw = |Vulfw, w?=0, |Vw(z) <1, |[Vw(0) =1.

Therefore w(z) = (ei(cf)*clwl*c”%,()), where cg, c1, ¢y are real constants, ¢ + ¢ = 1. On the
other hand,

0' 7’2 T O
030 = o5 (0] = Tt | (Orusl? = ouusl) (5 % (15 + 720) )|
j
o}
< C(U)ﬁ — 0,
j
52y . o o?
|81U)j($) . 62wj(x)| = 4}{% (61Uj . 82uj) (ZE]‘ + 5] (yj + Fﬁl’)) ‘ S C(U)K—JJQ — 0

Hence |01w(x)|? = |w(z)|?, drw(z) - Opw(z) = 0. The latter implies ¢? — c¢3 = 0, cica = 0,
which contradicts ¢? + ¢3 = 1, and Claim 6.9 is proved by going back from v; to u.

The quantization of fRZ (u3)2 dx follows from Proposition 6.1.
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