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Abstract Here we generalize the “BBH”-asymptotic analysis to a simplified mathematical model for

the planar ferromagnets and antiferromagnets. To develop such a static theory is a necessary step for

a rigorous mathematical justification of dynamical laws for the magnetic vortices formally derived in

[1] and [2].
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1 Introduction

Topological solitons (vortices) arise in a variety of physical problems and have been the subject
of much study over the last four decades or so. Among the best known examples are domain
walls and magnetic bubbles in a ferromagnetic continuum, vortices in superfluids and supercon-
ductors, topological defects in liquid crystals, as well as skyrmions, monopoles and instantons
which are particle-like solutions in generic models of high-energy physics. The present work ad-
dresses the static theory for some simplified model of planar ferromagnets and antiferromagnets.
The motivation of such a study comes from attempting a rigorous mathematical justification
of the dynamical laws of magnetic vortices formally derived in [1], [2] etc.

The magnetic vortices have been studied extensively for ferromagnets and weak ferromag-
nets. In both cases a nonvanishing magnetization develops in the ground state, albeit by a
different physical mechanism, which then allows detailed experimental investigations. In con-
trast, direct experimental evidence for pure antiferromagnetic vortices is absent. Nonetheless,
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theoretical arguments suggest that such vortices should exist for essentially the same reason
as in ordinary ferromagnets, even though the governing dynamical equations are sufficiently
different.

Though the best known examples of topological magnetic solitons are magnetic bubbles
observed in abundance in ferromagnetic films with an easy-axis anisotropy [3], the experimental
situation is also relatively less clear in ferromagnets with an easy-plane anisotropy (planar
ferromagnets) for which the relevant solitons are theoretically predicted to be half bubbles or
vortices. It turns out that the energy functionals controlling the statics of planar ferromagnets
and antiferromagnets are essentially the same, see for examples [1], [2] and [4].

To describe this simplified model, we let Ω ⊂ R
2 be a bounded open connected domain

with smooth boundary. Define S1 = {x\x ∈ R
3, x3 = 0, (x1)2 + (x2)2 = 1}, S2 = {x\x ∈

R
3, (x1)2+(x2)2+(x3)2 = 1}. Let g : ∂Ω → S1 be a smooth map of degree d. Let H1

g

(
Ω, S2

)
=

{u\u ∈ H1(Ω, S2), u|∂Ω = g}. For any u ∈ H1
g

(
Ω, S2

)
, we let

Iε(u) =
∫

Ω

1
2

[
|∇u|2 +

(u3)2

ε2

]
dx, ε > 0. (1.1)

The energy functional (1.1) supposedly controls the statics of planar ferromagnets and antifer-
romagnets. As in [1], [2], [4], we are interested in the behavior of critical points of Iε as ε→ 0+.

If we replace S2 by R
2 and (u3)2

ε2 by (1−|u|2)2

2ε2 , then the problem becomes the familiar simplified
model of the Ginzburg-Landau theory for spercanductors.

For the Ginzburg-Landau energy functional, the asymptotic analysis for minimizers (or
even more general critical points) has been carried out in [5] and [6]. There are numerous
developments since these works, see the lectures [7] by the second author (on a brief description
of the state of the art before 1995), and higher-dimensional analogues. Though our analysis
closely follows the seminal work of [6], there are many new subtle difficulties. A simple reason
for this is that we are now working with S2-valued maps. This nonlinear, nonconvex constraint
in the variational problem (1.1) gives rise to similar difficulties for the study of harmonic maps.
In other words, we have to deal with both infinite energy concentrations and finite energy
bubbling. Our first result is the following (see Theorem 2.1):

Theorem 1.1 Suppose Ω ⊂ R
2 is a bounded connected open domain with smooth boundary.

Let g : ∂Ω → S1 be a smooth map of degree 0, and denote

Mg =

{
u\u ∈ H1

g

(
Ω, S1

)
,

∫
Ω

|∇u|2 = inf
v∈H1

g(Ω,S1)

∫
Ω

|∇v|2
}
. (1.2)

Then there exists an ε∗ = ε∗(g,Ω) > 0 such that for any 0 < ε ≤ ε∗(g,Ω), any uε minimizes Iε
on H1

g

(
Ω, S2

)
, we have u3

ε = 0 and uε ∈ Mg. Moreover, Mg is a finite set of smooth maps.

We note that Theorem 1.1 is somewhat different from Theorem 1 in [5]. In [5], the minimizers
uε can only approximate the limiting harmonic map u0 in the space C1,α for any α ∈ (0, 1)
(not in C2!). It is also clear that the image of uε in their case can not be in S1 except for that
it is a constant. The reason for this difference is because S1 is a totally geodesic submanifold
in S2 but not in R

2.
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When the degree d �= 0, as in [6], the minimum energy is going to ∞ as ε → 0+. We have
(see Theorem 4.1):

Theorem 1.2 Suppose Ω ⊂ R
2 is a bounded open simply connected domain with smooth

boundary. Let g : ∂Ω → S1 be a smooth map with deg(g, ∂Ω, S1) = d > 0. For a sequence uεi ,
minimizers of Iεi on H1

g (Ω, S
2), εi → 0+, after taking a subsequence if necessary, there exist d

distinct points a1, . . . , ad ∈ Ω such that

uεi → u∗ =


 d∏
j=1

x− aj
|x− aj |e

iha(x), 0


 in C∞

loc(Ω\{a1, . . . , ad}).

Here ha is harmonic in Ω and u∗|∂Ω = g. Moreover, for δ > 0 small, x ∈ Ω\ ∪di=1 Bδ (ai) and
k ∈ Z, k ≥ 0, we have

|Dku3
ε (x) | ≤ c (k, δ, g,Ω) e−

1
c(k,δ,g,Ω)εi .

More information about the locations of the so-called vortex points a1, . . . , ad and some
precise asymptotic formulas will be described in Theorem 4.2.

One of the key points involved in applying “BBH”-asymptotic analysis to our problem is
the following gradient estimate (see Theorem 3.1):

Theorem 1.3 Suppose Ω ⊂ R
2 is a bounded open domain with smooth boundary, and suppose

g : ∂Ω → S1 is smooth. Then there exist ε∗ = ε∗(g,Ω) > 0, c = c(g,Ω) > 0 such that for any
0 < ε ≤ ε∗(g,Ω), any uε minimizing Iε, we have |∇uε(x)| ≤ c(g,Ω)

ε for x ∈ Ω.

Indeed this gradient estimate is also true for solutions with an image lying in a half-sphere
(see Proposition 6.3), which need not be a minimizer. Theorem 1.3 is the starting point in the
proof of Theorem 1.2 (even though one may use other arguments, see [8]). We may use the
techniques in [6] after having this gradient estimate. Moreover, it gives a better understanding
of minimizers.

The study of the existence and stability of special solutions to the Euler-Lagrange equation
(2.1) of Iε would also be quite helpful for understanding the dynamics of vortices. Especially
for the problem

−�u =

(
|∇u|2 +

(
u3
)2

ε2

)
u− u3

ε2
e3, on B2

1 , u (x) =
(
eiqθ, 0

)
for x ∈ ∂B1, (1.3)

here u ∈ C∞
(
B2

1 , S
2
)
, q ∈ N. We have the following (see Proposition 5.1, Proposition 5.3 and

Proposition 5.4):

Proposition 1.1 There exists a unique f = fε,q defined on [0, 1] such that f (0) = 0, f (1) =
π
2 and uε,q =

(
sin f (r) eiqθ, cos f (r)

)
is a smooth solution to (1.3). In addition, f satisfies

0 < f (t) ≤ π
2 , f ′ (t) > 0 for 0 < t ≤ 1. For any ε > 0, uε,1 is strictly stable, and hence a local

minimizer. If q ≥ 2, then for 0 < ε < ε (q), uε,q is unstable.

The existence of solutions in Proposition 1.1 is dealt with by reducing (1.3) to ordinary
differential equations. The stability result is studied along the same lines as the work of [9]
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for the Ginzburg-Landau model. However, there are again some new technical difficulties. Due
to the nonlinearity introduced by S2, the second variation formula contains certain first-order
terms, unlike the one in [9]. These difficulties are overcome by a careful study of the qualitative
property of fε,q in the above proposition.

One of the most interesting aspects of our problem is the so-called energy quantization
phenomenon similarly to [10]. If we have a map u ∈ C∞ (

R
2, S2

)
satisfying

−�u =
(
|∇u|2 +

(
u3
)2)

u− u3e3 (1.4)

on R
2, then do we have 1

π

∫
R2

(
u3
)2 ∈ Z? If u decays fast enough at ∞, then this is the case.

In fact we have (see Proposition 6.1):

Proposition 1.2 Suppose u ∈ C∞ (
R

2, S2
)

satisfies (1.4) on R
2, u3 → 0 as |x| → ∞ and

there exists c > 0 such that∫
Br

(
|∇u|2 +

(
u3
)2) ≤ c log r for r ≥ 2. (1.5)

Then
∫

R2

(
u3
)2 = πd2, where d is the degree of u′

|u′| at ∞, u′ =
(
u1, u2

)
. Moreover

|Dku3 (x) | ≤ c (k, u) e−c|x|, c > 0, c (k, u) > 0, for any k ≥ 0,

|Dku (x) | ≤ c (k, u)
|x|k for k ≥ 1.

If we write u1 + iu2 = ρei(dθ+ψ) outside ball BR0 , then |∇ψ (x) | = O
(

1
|x|2

)
.

We point out that if u ∈ C∞ (
R

2, S2
)

locally minimizes I1, then it satisfies the growth
conditions in Proposition 1.2 (see [11]) and hence the quantization property is correct. Another
important case for such quantization to be valid is when the image of u lies in the closed upper
half sphere. That is (see Proposition 6.4):

Theorem 1.4 Suppose u ∈ C∞ (
R

2, S2
)

satisfies (1.4) on R
2, u3 ≥ 0, lim inf |x|→∞ |∇u(x)| =

0,
∫

R2

(
u3
)2
dx <∞. Then either u3 ≡ 0 or

|u3(x)| ≤ c(u)e−
|x|
16 , |∇u3(x)| ≤ c(u)e−

|x|
16 , |∇u(x)| ≤ c(u)

|x| ,
∫

R2

(
u3
)2
dx = πd2,

where d is the degree of u′
|u′| at ∞, u′ =

(
u1, u2

)
.

We shall present various examples so that such energy quantization may be false. It is
obvious that there are many more rich classes of entire solutions of (1.4) than the one studied
in [10].

In our forthcoming works (also jointly with Jalal Shatah), we should apply the static theory
developed here to the study of the dynamics of magnetic vortices.

The paper is written as follows: In Section 2 below, we prove that when the degree of g is
zero and ε is small enough, then the minimizer of Iε is in fact a minimizing harmonic map to S1.
Section 3 proves the gradient estimate for minimizers. In Section 4, we use the gradient estimate



Static Theory for Planar Ferromagnets and Antiferromagnets 545

proved in Section 3 and arguments from [6] to prove the convergence of minimizers away from
|d| vortex points. We also present some asymptotic formulas for this convergence. Section 5
studies special solutions to the Euler-Lagrange equation of Iε and the stability property of these
solutions. In Section 6 we present several results on the energy quantization.

After the present work was accepted, we learned from S. Serfaty an earlier work by N. Andre
and I. Shafrir: ”On nematics stabilized by a large external field”, Rev. in Math Phys., Vol. 11,
No. 6, 1999, 653–710. In that paper authors studied many similar issues. However, we noticed
that one of the key point in the proof, the gradient estimates (see our Theorem 1.3), was not
fully explained and verified. They also did not discuss these energy quatization results as well
as Liouville type theorems.

2 The Case deg(g, ∂Ω, S1) = 0

In this section, we shall study the behavior of minimizers of Iε as ε → 0+ for the case
deg

(
g, ∂Ω, S1

)
= 0. Before we proceed, we would like to establish some basic properties for

minimizers.

Lemma 2.1 There exists at least one uε ∈ H1
g (Ω, S2) which minimizes Iε. All minimizers

are smooth and satisfy

−�uε =
(
|∇uε|2 +

(u3
ε)

2

ε2

)
uε − u3

ε

ε2
e3 in Ω, uε|∂Ω = g. (2.1)

Here e3 = (0, 0, 1).

Proof The existence follows from the direct method in the calculus of variations. The smooth-
ness of minimizers follows from [12]. In fact, it follows from [13] and [14] that every critical
point of Iε is smooth.

Lemma 2.2 Suppose uε is a minimizer of Iε. Then either u3
ε ≡ 0 in Ω or u3

ε > 0 in Ω or
u3
ε < 0 in Ω.

Proof Let uε be a minimizer of Iε. Putting v(x) = (u1
ε(x), u

2
ε(x), |u3

ε(x)|), then v ∈ H1
g (Ω, S

2)
is also a minimizer. From Lemma 2.1 we know v is smooth and it satisfies

−�v3 =
(
|∇v|2 +

(v3)2

ε2

)
v3 − v3

ε2
, v3 ≥ 0, v3|∂Ω = 0.

It follows from the Harnack inequality that either v3 ≡ 0 or v3 > 0 in Ω. If v3 ≡ 0, then u3
ε ≡ 0.

If v3 > 0 in Ω, then u3
ε > 0 in Ω or u3

ε < 0 in Ω.
Now we may state the main theorem of this section:

Theorem 2.1 Suppose Ω ⊂ R
2 is a bounded connected open domain with smooth boundary.

Let g : ∂Ω → S1 be a smooth map of degree 0, and denote

Mg =

{
u\u ∈ H1

g (Ω, S
1),

∫
Ω

|∇u|2 = inf
v∈H1

g(Ω,S1)

∫
Ω

|∇v|2
}
. (2.2)
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Then there exists an ε∗ = ε∗(g,Ω) > 0 such that for any 0 < ε ≤ ε∗(g,Ω), any uε minimizes Iε
on H1

g (Ω, S
2), we have u3

ε = 0 and uε ∈ Mg. Moreover Mg is a finite set of smooth maps.

Remark 2.1 We note that in Theorem 1 of [5], the minimizers uε can only approximate the
harmonic map u0 in the space C1,α for any α ∈ (0, 1). It is also clear that the image of uε in
their case can’t be in S1 except when it is a constant. This difference of our result from theirs
is due to a simple geometric fact that S1 is a totally geodesic submanifold of S2 but not of R

2.

We use the idea in Lecture 1 of [7] to show Theorem 2.1.

Lemma 2.3 Suppose g, Ω are as in Theorem 2.1. Then Mg is non-empty and compact in
H1(Ω).

Proof Since the degree of g is zero, we may find a smooth extension ũ : Ω → S1, then from
the direct method in the calculus of variations we know Mg is non-empty. Put

λ = inf
v∈H1

g(Ω,S1)

∫
Ω

|∇v|2. (2.3)

Suppose uj ∈ Mg. Then
∫
Ω
|∇uj |2 = λ, which implies that we may find a subsequence which

is still denoted as uj such that uj ⇀ u for some u ∈ H1(Ω). Hence u ∈ H1
g (Ω, S

1) and∫
Ω

|∇u|2 ≤ lim inf
j→∞

∫
Ω

|∇uj |2 = λ. (2.4)

From (2.4) we get
∫
Ω
|∇u|2 = λ, uj → u in H1(Ω) and u ∈ Mg.

Corollary 2.1 Under the assumptions of Theorem 2.1, we have for any ε > 0, there exists
δ = δ(g,Ω, ε) > 0 such that for u ∈ Mg and E ⊂ Ω, we have

∫
E
|∇u|2 ≤ ε whenever |E| ≤ δ.

Lemma 2.4 Under the assumptions of Theorem 2.1, for any ε0 > 0, there exists an r0 =
r0(g,Ω, ε0) > 0 such that for every minimizer uε and every x ∈ Ω we have∫

Br0 (x)∩Ω

|∇uε|2 +
(u3
ε)

2

ε2
≤ ε0,

if 0 < ε ≤ ε∗(g,Ω, ε0).

Proof From Corollary 2.1 we know there exists an r0 = r0(g,Ω, ε0) > 0 such that for x ∈ Ω
and u ∈ Mg, ∫

Br0 (x)∩Ω

|∇u|2 ≤ ε0
2
. (2.5)

If the conclusion of Lemma 2.4 is false, then there would exist εj → 0, uj = uεj minimizing Iεj

and xj ∈ Ω such that ∫
Br0 (xj)∩Ω

|∇uj |2 +
(u3
j )

2

ε2j
> ε0. (2.6)

After passing to a subsequence we may assume xj → x∗. On the other hand, for every v ∈
H1
g (Ω, S

1), we have ∫
Ω

|∇uj |2 +
(u3
j )

2

ε2j
≤
∫

Ω

|∇v|2. (2.7)
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After passing to a subsequence again we may assume uj ⇀ w in H1(Ω), uj → w in L2(Ω).∫
Ω
(u3
j )

2 ≤ ε2j
∫
Ω
|∇v|2 → 0 implies w3 = 0, hence w ∈ H1

g (Ω, S
1). Also from

∫
Ω
|∇w|2 ≤∫

Ω
|∇v|2, we know

∫
Ω
|∇w|2 = λ and w ∈ Mg. Mg and λ are defined in (2.2) and (2.3). Taking

v = w in (2.7), we have ∫
Ω

|∇uj |2 +
(u3
j )

2

ε2j
≤
∫

Ω

|∇w|2, (2.8)

∫
Ω

|∇w|2 ≤ lim inf
j→∞

∫
Ω

|∇uj |2 ≤ lim sup
j→∞

|∇uj |2 ≤
∫

Ω

|∇w|2. (2.9)

Hence
∫
Ω |∇uj |2 → ∫

Ω |∇w|2, the latter fact implies uj → w in H1(Ω). Going back to (2.8) we

get
∫
Ω

(u3
j )2

ε2
j

→ 0. Gathering all these facts, we have

∫
Br0 (xj)∩Ω

|∇uj |2 +
(u3
j )

2

ε2j
=
∫
Br0 (xj)∩Ω

|∇w|2 +
∫
Br0 (xj)∩Ω

(|∇uj |2 − |∇w|2)

+
∫
Br0 (xj)∩Ω

(u3
j )

2

ε2j
→

∫
Br0 (x∗)∩Ω

|∇w|2. (2.10)

(2.6) and (2.10) together imply
∫
Br0 (x∗)∩Ω

|∇w|2 ≥ ε0; this contradicts (2.5) because w ∈ Mg.
Hence the conclusion of Lemma 2.4 follows.

Lemma 2.5 Suppose u : Ω → S2 is smooth and −�u = (|∇u|2 + (u3)2

ε2 )u − u3

ε2 e3, where
e3 = (0, 0, 1). Denoting eε(u) = 1

2

[
|∇u|2 + (u3)2

ε2

]
, then

−�eε(u) = 4eε(u)2 − |D2u|2 − 2
ε2

|∇u3|2 − (u3)2

ε4
, (2.11)

and hence −�eε(u) ≤ 4eε(u)2.

Proof For each k = 1, 2 or 3, we have

−�uk = 2eε(u)uk − u3

ε2
δk3 , �eε(u) = |D2u|2 +

∑
i,j

∂iu
j∂i�uj +

1
ε2

(|∇u3|2 + u3�u3);

plugging in the equation of u, we get the conclusion.

Lemma 2.6 If v ∈ C∞(Br), v ≥ 0, −�v ≤ v2 on Br, then there exists an η0 > 0, such that∫
Br
v ≤ η0 implies supB r

2
v ≤ c−∫

Br
v ≤ c

r2 η0. Here c and η0 are absolute constants.

Proof By scaling we may assume r = 1. Put K = max|x|≤1(1 − |x|)2v(x). We claim K ≤ 1.
Otherwise, if K > 1, choosing x0 ∈ B1 such that (1 − |x0|)2v(x0) = K. Setting σ = 1 − |x0|,
then for x ∈ B σ

2
(x0), v(x) ≤ 4K

σ2 . w(x) = σ2

4K v(x0 + σ
2
√
K
x) is well defined on B1. It satisfies

−�w ≤ w2, w ≤ 1 on B1, w(0) =
1
4
,

∫
B1

w =
∫
B σ

2
√

K
(x0)

v(x)dx ≤ η0.

Hence −�w ≤ w. From the mean value inequality we know w(0) ≤ c −∫
B1
w ≤ cη0. Here c is

an absolute constant. Choose η0 small enough such that cη0 < 1
4 , and we get a contradiction.
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Hence K ≤ 1. On B 3
4

we have v(x) ≤ 16, −�v ≤ 16v. So again by the mean value inequality
we get v(x) ≤ c

∫
B 3

4

v ≤ c
∫
B1
v ≤ cη0.

Corollary 2.2 Under the assumptions of Theorem 2.1, there exists an ε∗ = ε∗(g,Ω) > 0
such that for 0 < ε ≤ ε∗(g,Ω), any uε ∈ H1

g (Ω, S2) minimizing Iε, and K any compact subset
of Ω, we have

sup
K

(
|∇uε|2 +

(u3
ε)

2

ε2

)
≤ c(g,Ω,K).

Proof This follows from Lemma 2.4, Lemma 2.5 and Lemma 2.6.
Now we estimate up to the boundary.

Lemma 2.7 Under the assumption of Theorem 2.1, there exists an ε∗ = ε∗(g,Ω) > 0 such
that for any 0 < ε ≤ ε∗(g,Ω) and any uε minimizing Iε, we have

sup
Ω

(
|∇uε|2 +

(u3
ε)

2

ε2

)
≤ c(g,Ω).

Proof From Lemma 2.2 we may assume u3
ε ≥ 0. We prove Lemma 2.7 by a contradiction

argument. If Lemma 2.7 is false, then there would exist εj → 0, uj = uεj minimizing Iεj such
that

sup
Ω

(
|∇uj |2 +

(u3
j )

2

ε2j

)
= Kj → ∞. (2.12)

Suppose the maximum is reached at xj ∈ Ω. From Corollary 2.2 we know xj must go to ∂Ω,
we may assume xj → x∗ for some x∗ ∈ ∂Ω. By the arguments in Lemma 2.4, after passing to

a subsequence, there exists a u ∈ Mg such that uj → u in H1(Ω) and
∫
Ω

(u3
j )2

ε2
j

→ 0. Denote x∗j
as the closest point to xj on ∂Ω. By rotation and translation, we may assume x∗j = 0 and the
tangent line of ∂Ω is the coordinate line {x2 = 0}, hence x1

j = 0. Put

τj =
√
Kjεj > 0, vj(x) = uj

(
x√
Kj

)
, yj =

√
Kjxj .

For eτj (vj) = 1
2

[
|∇vj |2 +

(v3
j )2

τ2
j

]
, we have eτj (vj)(yj) = 1

2 and eτj (vj) ≤ 1
2 . First we observe

y2
j → 0, otherwise we may use Lemma 2.6 to get a contradiction. Then we observe that τj must

go to zero, otherwise we may use standard elliptic estimates and the fact that
∫
B1∩Ωj

eτj (vj) → 0
(Ωj is the domain of vj) to get a contradiction. From v3

j ≤ τj we know supΩj
v3
j → 0. Putting

v1
j + iv2

j = ρje
iψj on B2 ∩ Ωj then ρj is very close to 1 and we have

div(ρ2
j∇φj) = 0, �ρj − ρj |∇φj |2 = −2ρjeτj (vj). (2.13)

Since φj is smooth on ∂Ωj ∩B2 and converges to a constant, we have

|∇φj |Cα(B1∩Ωj) → 0. (2.14)

Setting rj = 1 − ρj , then we have

rj |∂Ωj∩B2 = 0, rj ≥ 0, −�rj ≤ ρj |∇φj |2 ≤ δj → 0 in B1 ∩ Ωj . (2.15)
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We also know rj → 0 uniformly. A barrier argument tells us

|∇ρj |L∞(∂Ωj∩B 1
2
) ≤ αj , (2.16)

where αj → 0. Since

−�v3
j ≤ v3

j , v3
j |∂Ωj∩B2 = 0, v3

j → 0 uniformly, (2.17)

similar arguments tell us

|∇v3
j |L∞(∂Ωj∩B 1

2
) ≤ βj , (2.18)

where βj → 0. From (2.14), (2.16) and (2.18) we get eτj (vj) ≤ γj , γj → 0 on ∂Ωj∩B 1
2
. Now by

the mean value inequality near the boundary (see Chapter 8 of [15]) and −�eτj (vj) ≤ 2eτj (vj)
in Ωj , we get

1
2

= eτj (vj)(yj) ≤ c


∫

B 1
2
∩Ωj

eτj (vj) + γj


 → 0,

which is a contradiction.

Proof of Theorem 2.1 By Lemma 2.7 we know for 0 < ε ≤ ε∗(g,Ω) and any uε minimizing
Iε, we have

sup
Ω

(
|∇uε|2 +

(
u3
ε

)2
ε2

)
≤ c0(g,Ω). (2.19)

We may assume ε∗(g,Ω) ≤ 1√
c0(g,Ω)

; then for 0 < ε ≤ ε∗(g,Ω), we have

1
ε2

−
(
|∇uε|2 +

(
u3
ε

)2
ε2

)
≥ 0. (2.20)

Now since

−�u3
ε +

(
1
ε2

−
(
|∇uε|2 +

(
u3
ε

)2
ε2

))
u3
ε = 0, u3

ε|∂Ω = 0, (2.21)

it follows from the maximum principle and (2.20) that u3
ε ≡ 0, then it is clear that uε ∈ Mg.

To see Mg is finite, we define

Hg =
{
u\u ∈ H1

g

(
Ω, S1

)
is a harmonic map to S1

}
. (2.22)

Fix a u0 ∈ Mg, then the map from H1 (defined in the same way as in (2.22) by replacing
g with 1) to Hg given by u �→ (u0 · u) (complex multiplication) is a bijection. Let ∂Ω =
∪nj=0Cj , C0, . . . , Cn be connected components of ∂Ω. Then for any u ∈ H1, u = eiϕ with
ϕ ∈ C∞ (

Ω,R
)
, a harmonic function satisfying ϕ|C0 = 0, ϕ|Cj = 2kjπ, kj ∈ Z for 1 ≤ j ≤ n.

Let ϕj ∈ C∞ (
Ω,R

)
be the harmonic function on Ω with ϕj |Ck

= δjk, for 0 ≤ k ≤ n. Then

ϕ =
n∑
j=1

2kjπϕj . (2.23)
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Since ∇ϕ1, . . . ,∇ϕn are linearly independent, we may find a real number c > 0, such that for
any a1, . . . , an ∈ R, ∫

Ω

|∇ (a1ϕ1 + · · · + anϕn) |2 ≥ c

n∑
j=1

a2
j . (2.24)

For the u ∈ H1 above, by (2.5) and (2.6) we have

∫
Ω

|∇u|2 =
∫

Ω

|∇ϕ|2 ≥ c

n∑
j=1

k2
j . (2.25)

For any v ∈ Mg, v = u0 · u with u ∈ H1, then for the ϕ, kj corresponding to u, we have

c

n∑
j=1

k2
j ≤

∫
Ω

|∇u|2 ≤ 2
∫

Ω

|∇u0|2 + 2
∫

Ω

|∇v|2 ≤ 2
∫

Ω

|∇u0|2 + 2λ, (2.26)

where λ is defined in (2.3). (2.26) implies #Mg <∞.

3 A Gradient Estimate for Minimizers

In this section we shall prove a gradient estimate for minimizers.

Theorem 3.1 Suppose Ω ⊂ R
2 is a bounded open domain with smooth boundary, and suppose

g : ∂Ω → S1 is smooth. Then there exist ε∗ = ε∗(g,Ω) > 0, c = c(g,Ω) > 0 such that for any
0 < ε ≤ ε∗(g,Ω), any uε minimizing Iε, we have |∇uε(x)| ≤ c(g,Ω)

ε for x ∈ Ω.

We shall prove in Proposition 6.3 that this gradient estimate is true for all solutions lying
in a half sphere, which need not be a minimizer. Both proofs will be helpful for the future
development. We also note that the map g in Theorem 3.1 is not necessarily of degree zero.

We need to establish several Liouville-type theorems before proving the gradient estimate.

Lemma 3.1 Suppose u is a continuous subharmonic function on R
2 which is bounded from

above. Then it is a constant.

Proof This is a well-known fact for R
2 which is not true for R

n, n > 2. The reason for this
difference is because the fundamental solution of the Laplacian in two dimensions is essentially
different from higher-dimensional ones. One may prove the lemma by a simple comparison with
the logarithm function.

Lemma 3.2 Suppose u : R
2 → S2 is a smooth harmonic map with u3 ≥ 0. Then either

u ≡ const or u(x) = (cosψ(x), sinψ(x), 0), where ψ is a harmonic function on R
2.

Proof From the harmonic map equation we know −�u3 = |∇u|2u3 ≥ 0. Hence −u3 is
subharmonic on R

2. Because it is bounded, from Lemma 3.1 we conclude that u3 ≡ c, a
constant. If c > 0, then c|∇u|2 = −�c = 0 implies u is a constant. If c = 0, then u3 = 0 and
the image of u is in S1. Since R

2 is simply connected, we know u(x) = (cosψ(x), sinψ(x), 0)
and ψ is a harmonic function.
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The following is an easy calculation:

Lemma 3.3 Suppose U is an open subset in an m dimensional Riemannian manifold M ,
u ∈ C∞ (

U,Sn−1
)
, ϕ ∈ C∞

c (U,Rn), define u(x, t) = u(x)+tϕ(x)
|u(x)+tϕ(x)| , φ(t) =

∫
U
|∇Mu(x, t)|2dµM .

Then

φ′′(0) = 2
∫
U

[〈∇ (
3(u · ϕ)2u− 2(u · ϕ)ϕ− |ϕ|2u) ,∇u〉 + |∇ (ϕ− (u · ϕ)u) |2] dµM .

If, in addition, we know u is a harmonic map, then

φ′′(0) = 2
∫
U

[|∇ (
ϕT

) |2 − |∇u|2|ϕT |2] dµM .
Here ϕT = ϕ − (ϕ · u)u. If, in addition, φ′′ (0) ≥ 0 for all ϕ ∈ C∞

c (U,Rn), then we say u

is stable.

Lemma 3.4 If u : R
2 → S2 is a smooth stable harmonic map with u3 ≥ 0, then it is a

constant map. In particular, any locally minimizing harmonic map from R
2 to a half sphere is

a constant map.

Proof If u is not a constant, then from Lemma 3.2 we know u (x) = (cosψ (x) , sinψ (x) , 0)
and ψ is a nonconstant real harmonic function. From Lemma 3.3 we know that for any η ∈
C∞
c

(
R

2,R
)
, by taking ϕ = (0, 0, η), we have∫

R2
|∇η|2 − η2|∇u|2 ≥ 0. (3.1)

Fix an η0 ∈ C∞
c

(
R

2,R
)

such that 0 ≤ η0 ≤ 1, η0|B1 = 1, η0|R2\B2 = 0. In (3.1), setting
η (x) = ηR (x) = η0

(
x
R

)
for R > 0 and letting R → ∞, we get

∫
R2 |∇ψ|2 ≤ c, an absolute

constant. Hence ψ ≡ const, a contradiction.
We shall prove in [11] that any minimizing harmonic map from R

2 to S2 is a constant map;
here S2 need not have the standard metric.

Remark 3.1 The condition u3 ≥ 0 in Lemma 3.4 can’t be dropped because any holomorphic
or anti-holomorphic map from R

2 to S2 is stable. In fact, a theorem of A. Lichnerowicz
says every holomorphic or anti-holomorphic map from a compact Kähler manifold to another
Kähler manifold is energy minimizing in its homotopy class (see Theorem 4.2 in [16]). If
we examine the proof closely, one can easily show that without the compactness condition
on the domain manifold, any holomorphic or anti-holomorphic map is energy minimizing in
its homotopy class if we only consider those homotopies supported in a compact subset. In
particular, this shows holomorphic or anti-holomorphic maps between Kähler manifolds are
always stable harmonic maps.

We will use Lemma 3.4 to classify all the blowing-up maps of certain equations later. Indeed
we only need the following version, which is slightly different from the above one. We present
it here because the proof will be quite helpful for further development.

Lemma 3.5 Let u(x) = (ei(c0+c1x
1+c2x

2), 0), where c0, c1, c2 are real constants, either c1 or
c2 being nonzero. Then u is not locally minimizing for I1 (see (1.1) for definition) on R

2.
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Proof By contradiction. If u is locally minimizing I1, without loss of generality we may assume
u(x) = (eiλx

1
, 0), λ > 0. Choose a map w :

[
0, 2π

λ

]× [0, 1] → S2 such that w is Lipschitz and

w(0, t) = w

(
2π
λ
, t

)
= w(s, 1) = (1, 0, 0), w(s, 0) =

(
eiλx

1
, 0
)
, for0 ≤ t ≤ 1, 0 ≤ s ≤ 2π

λ
.

Consider for l > 0, Il =
{
x\0 ≤ x1 ≤ 2π

λ , 0 ≤ x2 ≤ l + 2
}
. For x ∈ Il, define

vl(x) =




w(x) if 0 ≤ x2 ≤ 1,

(1, 0, 0) if 1 ≤ x2 ≤ l + 1,
w
(
x1, l + 2 − x2

)
if l + 1 ≤ x2 ≤ l + 2.

Then vl|∂Il
= u|∂Il

, hence I1(u) ≤ I1 (vl). In other words, 2πλ(l + 2) ≤ 2I1(w). Letting
l → ∞, we get a contradiction. Another way to prove the lemma is the following: If u is locally
minimizing, then for every R > 1, define vR : BR → C by

vR (x) =

{
(R− |x|) + (|x| −R+ 1) ei(c0+c1x

1+c2x
2) if R− 1 ≤ |x| ≤ R,

1 if |x| ≤ R− 1.

It follows from formula (5.11) that I1 (Γ ◦ vR, BR) ≤ c (c1, c2)R. Here Γ is the stereographic
projection defined in (4.1). Hence 1

2

(
c21 + c22

)
R2 = I1 (u,BR) ≤ c (c1, c2)R. Letting R → ∞,

we get a contradiction.

Lemma 3.6 Denote H0 = {x\x ∈ R
2, x2 > 0}, the open upper half plane. Suppose u : H0 →

S2 is a smooth harmonic map, which is stable in H0. If, in addition, u3 ≥ 0, u|∂H0 = const,
|∇u(x)| ≤ 1, then u ≡ const in H0.

Proof We have −�u(x) = |∇u(x)|2u(x). For any sequence hj → ∞ and lj , define uj(x) =
u(x1 + lj , x

2 +hj), for x ∈ Hj , Hj = {x\x ∈ R
2, x2 > −hj}. Then −�uj(x) = |∇uj(x)|2uj(x),

|∇ uj(x)| ≤ 1 in Hj . Hence for any α ∈ (0, 1) and r > 0, |uj |C1,α(Br) ≤ c(α, r). From the
Schauder theory we know after passing to a subsequence uj → v in C∞(R2), v ∈ C∞ (

R
2, S2

)
.

Since uj is stable, from Lemma 3.3 we know for any ϕ ∈ C∞
c

(
Hj ,R

3
)
,∫

Hj

(
|∇ (ϕ− (uj · ϕ)ϕ) |2 −

(
|ϕ|2 − (uj · ϕ)2

)
|∇uj |2

)
dx ≥ 0.

Letting j → ∞, we get for any ϕ ∈ C∞
c

(
R

2,R3
)
,∫

H

(
|∇ (ϕ− (v · ϕ)ϕ) |2 −

(
|ϕ|2 − (v · ϕ)2

)
|∇v|2

)
dx ≥ 0,

that is, v is a stable harmonic map on R
2. Furthermore, u3

j ≥ 0 implies v3 ≥ 0. From Lemma
3.4 we know v must be a constant. Hence ∇uj(x) → 0 in C∞(R2). This tells us that

lim
x2→∞

(
sup
x1∈R

|∇u(x1, x2)|
)

= 0. (3.2)

Now let us look at the Hopf function

ϕ(z) = |∂1u|2 − |∂2u|2 − 2i(∂1u · ∂2u).
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We know it is a holomorphic function on the upper half plane (see [17] Section 1). Imϕ is
harmonic and it is zero on {x2 = 0} because u is constant on this line. It is also bounded
because |∇u| is. Hence Imϕ = 0. From the Cauchy-Riemann equations we know Reϕ ≡ c, a
constant. From the limit in (3.2) we know c = 0. Hence |∂1u|2 = |∂2u|2. Since u is a constant
on {x2 = 0}, we know

∂1u(x1, 0) = ∂2u(x1, 0) = 0. (3.3)

Put ũ(x) = u(x) for x2 ≥ 0 and ũ(x) = u(x1,−x2) for x2 ≤ 0. Then from (3.3) we know
ũ is a harmonic map on R

2 with ũ3 ≥ 0. If ũ is not a constant, from Lemma 3.2 we know
ũ(x) = (cosψ(x), sinψ(x), 0) and ψ is a harmonic function. From the bound of |∇u| we know
ψ must be linear and |∇ũ| = |∇ψ| ≡ α > 0. This contradicts the limit in (3.2). Hence ũ is a
constant and we get the lemma.

Proof of Theorem 3.1 Without loss of generality, we assume u3
ε ≥ 0, by Lemma 2.2. Suppose

the conclusion of Theorem 3.1 is not true; then we may find εj → 0, uj = uεj minimizing Iεj

such that

Kj = εj sup
x∈Ω

|∇uj(x)| → ∞.

Choose xj ∈ Ω such that εj |∇uj(xj)| = Kj , define

vj(x) = uj

(
xj +

εj
Kj

x

)
for x ∈ Ωj , Ωj =

Kj

εj
(Ω − xj). (3.4)

Then

−�vj =

(
|∇vj |2 +

(v3
j )

2

K2
j

)
vj +

v3
j

K2
j

e3 on Ωj , |∇vj(x)| ≤ 1, |∇vj(0)| = 1. (3.5)

There are two cases we are going to discuss. The first case is Ωj → R
2 as j → ∞. In this case,

from (3.5) we get for any α ∈ (0, 1), any r > 0, |vj |C1,α(Br) ≤ c(α, r). Hence we may assume
vj → v in C∞(R2) after passing to a subsequence. We have v ∈ C∞ (

R
2, S2

)
and |∇v(0)| = 1.

Claim 3.1 v is a locally minimizing harmonic map on the whole plane.

Proof of Claim 3.1 In fact, for any r > 0, w ∈ H1(Br, S2) such that w|∂Br = v|∂Br . For
0 < δ < 1, set

wj,δ(x) =




w

(
x

1 − δ

)
when |x| ≤ (1 − δ)r,

Π
(
r − |x|
rδ

v

(
r
x

|x|
)

+
|x| − r + rδ

rδ
vj

(
r
x

|x|
))

when (1 − δ)r ≤ |x| ≤ r,

where Π(ξ) = ξ
|ξ| for ξ ∈ R

3. Set

wδ(x) =




w

(
x

1 − δ

)
when |x| ≤ (1 − δ)r,

v

(
r
x

|x|
)

when (1 − δ)r ≤ |x| ≤ r.
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We have wj,δ → wδ in H1(Br). Since wj,δ|∂Br = vj |∂Br , we know∫
Br

|∇wj,δ|2 +
(w3

j,δ)
2

K2
j

≥
∫
Br

|∇vj |2 +
(v3
j )

2

K2
j

.

Letting j → ∞, we get
∫
Br

|∇wδ|2 ≥ ∫
Br

|∇v|2. Letting δ → 0, we have
∫
Br

|∇w|2 ≥ ∫
Br

|∇v|2.
This proves Claim 3.1.

Now v3
j ≥ 0 implies v3 ≥ 0. It follows from Lemma 3.4 that v is a constant. This contradicts

|∇v(0)| = 1.
The second case is Ωj → H, H being a half plane. After rotation we may assume H =

{x\x ∈ R
2, x2 > −a}, where a is a nonnegative number. Since on ∂Ωj the vj is simply a

dilation of g, we have for any r > 0, α ∈ (0, 1), |vj |C1,α(Br∩Ωj) ≤ c(α, r, g,Ω). Hence vj → v in

C∞ (
H
)
, v ∈ C∞ (

H,S2
)
. It is constant on ∂H. A similar argument to that above shows v is

a locally minimizing harmonic map in H, also v3 ≥ 0, |∇v(0)| = 1. From Lemma 3.6 we know
v is a constant, and we have a contradiction.

4 The Case deg(g, ∂Ω, S1) �= 0

In this section, we shall discuss the case when we have a topological obstruction, that is, the
case when deg

(
g, ∂Ω, S1

) �= 0.

Theorem 4.1 Suppose Ω ⊂ R
2 is a bounded open simply connected domain with smooth

boundary. Let g : ∂Ω → S1 be a smooth map with deg (g, ∂Ω, S1) = d > 0. For a sequence uεi ,
minimizers of Iεi on H1

g (Ω, S2), εi → 0+, after taking a subsequence if necessary, there exist d
distinct points a1, . . . , ad ∈ Ω such that

uεi → u∗ =


 d∏
j=1

x− aj
|x− aj |e

iha(x), 0


 in C∞

loc(Ω\{a1, . . . , ad}).

Here ha is harmonic in Ω and u∗|∂Ω = g. Moreover, for δ > 0 small, x ∈ Ω\ ∪di=1 Bδ (ai) and
k ∈ Z, k ≥ 0, we have

|Dku3
ε (x) | ≤ c (k, δ, g,Ω) e−

1
c(k,δ,g,Ω)εi .

Remark 4.1 We note that the convergence of minimizers uε to u∗ away from the vortices
is in C∞ topology, unlike the C1,α convergence in [6]’s case. The reason for this difference is
explained in Remark 2.1.

We shall determine the location of a1, . . . , ad after proving this theorem. Recall the following
important annulus lemma proved in [10]:

Lemma 4.1 (Annulus Lemma from [10]) A = Ar0,r1 = Br1\Br0 , u ∈ H1(A,R2), |u| ≥ σ > 0,
1
r20

∫
A

(
1 − |u|2)2 ≤ K, d = deg ( u

|u| , ∂Br) for r0 < r < r1, u = ρei(dθ+ψ), where ρ = |u|,
ψ ∈ H1(A,R) is a well-defined function. Then∫

A

|∇u|2 ≥ 2πd2 log
r1
r0

+
∫
A

|∇ρ|2 +
σ2

2

∫
A

|∇ψ|2 −
(√

π +
2d2

σ2

)
K.
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Lemma 4.2 Suppose Ω ⊂ R
2 is a bounded open simply connected domain with smooth

boundary, and suppose g̃ε : ∂Ω → S2 satisfies

1
ε2

∫
∂Ω

(
g̃3
ε

)2
ds+ |g̃ε|H1(∂Ω) ≤ K,

and g̃ε → g̃ uniformly on ∂Ω. Here deg (g̃, ∂Ω, S1) = 0, g̃ =
(
eiϕ0 , 0

)
on ∂Ω. We denote by ϕ0

the harmonic extension of itself from ∂Ω to Ω, ũ0 =
(
eiϕ0 , 0

)
on Ω. Suppose ũε minimizes Iε

in H1
g̃ε

(Ω, S2). Then

ũε → ũ0 in H1(Ω),
1
ε2

∫
Ω

(
ũ3
ε

)2 → 0.

Proof Denote

Γ : R
2 → S2\{(0, 0,−1)}, Γ(y1, y2) =

(
2y1

1 + |y|2 ,
2y2

1 + |y|2 ,
1 − |y|2
1 + |y|2

)
. (4.1)

This is the standard stereographic projection. If we use Γ−1 as the coordinate, then the metric
on S2 is given by

gS2 =
4

(1 + |y|2)2
(
dy1 ⊗ dy1 + dy2 ⊗ dy2

)
.

Denote gε = Γ−1 ◦ g̃ε, g = Γ−1 ◦ g̃. We want to construct a comparison function vε = ηεe
iϕε .

For convenience, let d (x) = dist (x, ∂Ω) for any x ∈ R
2. There exists a δ > 0 such that for any

x with d (x) < δ, there exists a unique φ (x) ∈ ∂Ω such that |x− φ (x) | = d (x). For x ∈ Ω, let

ηε (x) =




d (x)
ε

+
(

1 − d (x)
ε

)
|gε (φ (x)) |, if d (x) ≤ ε;

1, if d (x) ≥ ε.

(4.2)

It is clear that ηε → 1 uniformly on Ω. Simple computations show∫
Ω

|∇ηε|2 ≤ c(K,Ω)ε,
1
ε2

∫
Ω

(1 − ηε)2 ≤ c(K,Ω)ε. (4.3)

On the other hand, on ∂Ω, we may write gε = |gε|eiϕε such that ϕε → ϕ0 uniformly. We
denote by ϕε the harmonic extension of itself from ∂Ω to Ω. It follows from the interpolation
inequality that ϕε → ϕ0 in H1 (Ω). By considering the minimum property of ũε and choosing
Γ ◦ vε as a comparison map we get∫

Ω

|∇ũε|2 +
1
ε2

∫
Ω

(
ũ3
ε

)2 ≤
∫

Ω

[
4

(1 + |vε|2)2
|∇vε|2 +

1
ε2

(
1 − |vε|2
1 + |vε|2

)2
]

=
∫

Ω

[
4

(1 + η2
ε)

2

(|∇ηε|2 + η2
ε |∇ϕε|2

)
+

1
ε2

(
1 − η2

ε

1 + η2
ε

)2
]

≤ c(K,Ω)ε+
∫

Ω

4η2
ε

(1 + η2
ε)

2 |∇ϕε|2. (4.4)

Suppose ũεi ⇀ ũ in H1(Ω). Taking a limit in (4.4) we get∫
Ω

|∇ũ|2 ≤
∫

Ω

|∇ϕ0|2 =
∫

Ω

|∇ũ0|2. (4.5)
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Since ũ ∈ H1
g̃ (Ω, S

1), (4.5) implies ũ = ũ0. Note that it follows again from (4.4) that

lim sup
ε→0+

∫
Ω

|∇ũε|2 ≤
∫

Ω

|∇ũ0|2. (4.6)

(4.6) implies ũε → ũ0 in H1(Ω). Going back to (4.4), we get 1
ε2

∫
Ω

(
ũ3
ε

)2 → 0.

Lemma 4.3 Under the assumption of Theorem 4.1, there exists a c = c (g,Ω) > 0 such that
for any 0 < ε ≤ 1, any uε minimizing Iε we have

Iε(uε) ≤ πd log
1
ε

+ c (g,Ω). (4.7)

Proof Choose a w ∈ C∞ (
B1, S

2
)

such that w(x) = (x, 0) for x ∈ ∂B1. Pick up d different
points in Ω, namely a1, . . . , ad, fix a ρ > 0 suitably small, let Ωρ = Ω\⋃d

j=1Bρ(aj). Define
g̃ : ∂Ω → S1 as

g̃(x) =




g(x) x ∈ ∂Ω,(
x− aj
|x− aj | , 0

)
x ∈ ∂Bρ(aj).

Since deg(g̃, ∂Ωρ, S
1) = 0, we may find ũ : Ωρ → S1 smooth and ũ|∂Ωρ = g̃. Now define

vε(x) =




ũ(x) x ∈ Ωρ,(
x− aj
|x− aj | , 0

)
x ∈ Bρ(aj)\Bε(aj),

w

(
x− aj
ε

)
x ∈ Bε(aj).

Then Iε(uε) ≤ Iε(vε) ≤ πd log 1
ε + c(g,Ω).

Now let us state the Pohozaev identity:

Lemma 4.4 Suppose D ⊂ R
2 is a bounded open domain with piecewisely C1 boundary. Let

u ∈ C∞(D,S2) satisfy −�u =
(
|∇u|2 + (u3)2

ε2

)
u− u3

ε2 e3. Then

1
ε2

∫
D

(
u3
)2

+
1
2

∫
∂D

(x · ν) |∂νu|2ds =
1
2

∫
∂D

(x · ν) |∂τu|2ds

+
1

2ε2

∫
∂D

(x · ν) (u3
)2
ds−

∫
∂D

(x · τ) (∂νu · ∂τu) ds,

where ν is the unit outward normal and τ is the unit tangential vector in the positive direction.
Suppose D is strictly star-shaped with respect to 0, i.e. there exist α > 0, ρ > 0 such that
|x| < ρ for x ∈ D and x · ν ≥ αρ for x ∈ ∂D. Then

1
ε2

∫
D

(
u3
)2

+
αρ

4

∫
∂D

|∂νu|2ds ≤ ρ

2ε2

∫
∂D

(
u3
)2
ds+

( ρ
α

+
ρ

2

)∫
∂D

|∂τu|2ds.

Proof Multiply the equation by xj∂ju, then do integration by parts.

We also need the following comparison function from Lemma 2 on p. 130 of [5]:
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Lemma 4.5 For R > 0, ε > 0, ωε(x) = e
|x|2−R2

4εR , then

−�ωε +
ωε
ε2

=
1
ε2

(
1 − ε

R
− |x|2

4R2

)
e

|x|2−R2

4εR .

In particular, if 0 < ε < 3
4R, then −�ωε + ωε

ε2 ≥ 0 on BR.

Proof of Theorem 4.1 First we have∫
Ω

|∇u3
ε|2 +

1
ε2

∫
Ω

(
u3
ε

)2 ≤ c(g,Ω) for any 0 < ε ≤ 1. (4.8)

In fact, if we denote u′ε =
(
u1
ε, u

2
ε

)
, then it follows from [18] and [19] that

∫
Ω

1
2
|∇u′ε|2 +

(
u3
ε

)2
4ε2

dx =
∫

Ω

1
2
|∇u′ε|2 +

1 − |u′ε|2
4ε2

dx

≥
∫

Ω

1
2
|∇u′ε|2 +

(
1 − |u′ε|2

)2
4ε2

dx ≥ πd log
1
ε
− c(g,Ω).

This inequality and (4.7) imply (4.8).

To simplify the notations, we will use uε to denote uεi . By Lemma 2.2, we may assume
u3
ε ≥ 0. Denote Sε = {x\x ∈ Ω, u3

ε(x) ≥ 1
2}. For x ∈ Sε, we may have λ0 = λ0(g,Ω) > 0 such

that ∫
Bλ0ε(x)∩Ω

(
u3
ε

)2
ε2

≥ 1
c(g,Ω)

> 0. (4.9)

This follows from the gradient estimate in Theorem 3.1, |∇uε| ≤ c(g,Ω)
ε for ε small. Sε ⊂⋃

x∈Sε
Bλ0ε(x); from the Vitali covering lemma we know there exist xε1, . . . , x

ε
Nε

∈ Sε such
that Sε ⊂ ⋃Nε

i=1B5λ0ε(xεi ) and Bλ0ε(xεi ) are mutually non-disjoint. This together with the
inequalities (4.8) and (4.9) tells us Nε ≤ c(g,Ω). After an induction argument we may assume

Sε ⊂
kε⋃
i=1

Bλε(xεi ), x
ε
i ∈ Sε, kε ≤ c (g,Ω), λ = λ(g,Ω), |xεi − xεj | ≥ 5λε for i �= j.

We may assume kε ≡ k after passing to a subsequence. We also assume xεi → x∗i ∈ Ω. Let
a1, . . . , al be different points in x∗1, . . . , x∗k. Choose a smooth, bounded, connected open set
Ω′ such that Ω ⊂ Ω′, also fix a smooth map g̃ : Ω′\Ω → S1 such that g̃|∂Ω = g. Any map
u : Ω → S2 such that u|∂Ω = g can be considered as a map on Ω′ by setting u|Ω′\Ω = g̃. Fix a
δ > 0 such that δ < dist(Ω,R2\Ω′), δ < 1

2 |ai − aj | for i �= j. When ε is small we have

k⋃
i=1

Bλε(xεi ) ⊂
l⋃

i=1

B δ
4
(ai).

From the gradient estimate we know

|deg (u′ε, ∂Bλε(x
ε
i )) | =

∣∣∣∣ 1
2π

∫
∂Bλε(xε

i
)

u′ε
|u′ε|2

∧ (u′ε)τ

∣∣∣∣ ≤ c (g,Ω).
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Here u′ε =
(
u1
ε, u

2
ε

)
. By passing to a subsequence we may assume

deg (u′ε, ∂Bλε(x
ε
i )) = di, i = 1, . . . , k and deg

(
u′ε, ∂B δ

2
(xεi )

)
= κi, i = 1, . . . , l.

Fix an i, set Λi = {j\1 ≤ j ≤ k, xεj → ai}. Then
∑

j∈Λi
dj = κi. Define

Ωε,δ
i = Bδ(ai)\

⋃
j∈Λi

Bλε(xεj).

By Lemma 4.1 and an inductive argument we have, for i = 1, . . . , l, that∫
Ωε,δ

i

|∇u′ε|2 ≥ 2π|κi| log δ
ε
− c (g,Ω). (4.10)

As in [6], we have κi ≥ 0, for i = 1, . . . , l. Indeed, from (4.10) we know

l∑
i=1

∫
Ωε,δ

|∇u′ε|2 ≥ 2π log
δ

ε

l∑
i=1

|κi| − c (g,Ω), Ωε,δ =
l⋃

i=1

Ωε,δ
i . (4.11)

Comparing this inequality with (4.7) and letting ε→ 0+, we get

l∑
i=1

|κi| ≤ d =
l∑

i=1

κi,

which implies
∑l

i=1 |κi| − κi ≤ 0, and hence κi ≥ 0.
Combining (4.7) and (4.11) we see

∫
Ω′

|∇u3
ε|2 +

∫
Ω′

δ

|∇u′ε|2 ≤ 2πd log
1
δ

+ c (g,Ω), Ω′
δ = Ω′\

d⋃
i=1

Bδ(ai). (4.12)

We may assume uε ⇀ u∗ in H1
loc (Ω′\{a1, . . . , al}) and uε → u∗ almost everywhere. From∫

Ω

(
u3
ε

)2 ≤ c (g,Ω)ε2 we get u3
∗ ≡ 0. Since div (u′ε ∧∇u′ε) = u′ε ∧ �u′ε = 0 in Ω, taking a limit

we get div (u′∗ ∧∇u′∗) = 0 in Ω\{a1, . . . , ad}. Hence from [13] we know u∗ is a smooth harmonic
map into S1 on Ω\{a1, . . . , ad} and u∗|∂Ω = g.

Next, we verify each κi > 0. In fact, we already know κi ≥ 0, if for some i, κi = 0, then
choose a R0 > 0 such that BR0(ai) is contained in Ω′ and it doesn’t contain other singularities.
After passing to a subsequence we may assume for some R ∈ (R0

2 , R0),

∫
∂BR(ai)

|∇uε|2 +

(
u3
ε

)2
ε2

≤ c,

for some c independent of ε, uε → u∗ uniformly on ∂BR(ai). From Lemma 4.2 we know

1
ε2

∫
BR(ai)

(
u3
ε

)2 → 0,

which contradicts (4.9), because BR(ai) contains at least one point of Sε. This shows each κi

is positive. In fact each κi is exactly equal to 1. To see this, we use Lemma 4.1 to obtain

∫
Ω′

δ

|∇u∗|2 ≥ 2π
l∑

i=1

κ2
i log

1
δ
− c (g,Ω). (4.13)
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On the other hand, by the lower semi-continuity we have∫
Ω′

δ

|∇u∗|2 ≤ 2πd log
1
δ

+ c (g,Ω). (4.14)

Combining (4.13) and (4.14) then letting δ → 0+ we get
∑

i κ
2
i ≤

∑
i κi, hence

∑
i(κ

2
i −κi) ≤ 0,

and this forces κi = 1, l = d. Via Lemma VI.1 of [6, p. 63] and (4.14) we have ai ∈ Ω, for
i = 1, . . . , d.

From the above arguments we know u∗ =
(∏d

j=1
x−aj

|x−aj |e
ih(x), 0

)
, where h is a harmonic

function in Ω\{a1, . . . , ad}, and u∗|∂Ω = g. Denote a = (a1, . . . , ad). Fixing a suitably small δ0,
we have from the proof of Lemma 4.1 that∫

Aδ,δ0 (ai)

|∇u∗|2 ≥ 2π log
δ0
δ

+
1
2

∫
Aδ,δ0 (ai)

|∇h|2 − c(g,Ω, a),

for 0 < δ < δ0. This, together with (4.14), implies∫
Aδ,δ0 (ai)

|∇h|2 ≤ c (g,Ω, a), for i = 1, . . . , d.

The latter fact implies h is of finite energy on the whole Ω and hence it is harmonic in Ω and
fully determined by its boundary value. We call it ha, then u∗ =

(∏d
j=1

x−aj

|x−aj |e
iha(x), 0

)
. Now

pick up any point x ∈ Ω\{a1, . . . , ad}, and for suitably small R > 0,

∫
BR(x)∩Ω

(
u3
ε

)2
ε2

→ 0, uε → u∗ in H1 (BR(x) ∩ Ω) .

This, together with Lemma 2.3, Lemma 2.4 and the proof of Lemma 2.5, implies

sup
Ωδ

(
|∇uε|2 +

(
u3
ε

)2
ε2

)
≤ c(g,Ω, δ), Ωδ = Ω\

d⋃
j=1

Bδ(aj). (4.15)

Fix a δ > 0 small, since

−�u3
ε +

(
1
ε2

−
(
|∇uε|2 +

(
u3
ε

)2
ε2

))
u3
ε = 0 in Ω. (4.16)

We conclude from (4.15), for ε small enough, that

1
ε2

−
(
|∇uε|2 +

(
u3
ε

)2
ε2

)
≥ 1

4ε2
on Ω δ

2
.

Since u3
ε ≤ 1 and u3

ε|∂Ω = 0, by the comparison function in Lemma 4.5 and the equation (4.16)
we deduce 0 ≤ u3

ε(x) ≤ e−
δ

16ε for x ∈ Ωδ. The standard elliptic estimates and Sobolev inequality
yield that |u3

ε|C1,α(Ωδ) ≤ c(α, g,Ω, δ)e−
1

c(δ)ε for α ∈ (0, 1), ε small. On the other hand, by the
first two equations we get |u′ε|C1,α(Ωδ) ≤ c(α, g,Ω, δ). An induction argument along with the
Schauder estimates yields the conclusion of the theorem.

Now we want to locate the points a1, . . . , ad and get more information for the asymptotes.
We have the following:
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Theorem 4.2 The d-tuple a = (a1, . . . , ad) in Theorem 4.1 minimizes the renormalized
energy W (g,Ω, b), b ∈ Ωd, (see Section I.4 of [6] for a definition). We also have(

u3
εi

)2
ε2i

→ π

d∑
j=1

δaj ,
|∇uεi |2
log 1

εi

→ 2π
d∑
j=1

δaj

in the sense of distribution, and

Iε(uε) = πd log
1
ε

+ dγ0 + inf
b∈Ωd

W (g,Ω, b) + o(1),

where γ0 will be explained later in Lemma 4.6. The minimizers have uniformly bounded p energy
for any 1 ≤ p < 2 i.e.

|uε|W 1,p(Ω) ≤ c(g,Ω, p) for 0 < ε ≤ 1.

For the third coordinate, we have

|u3
ε|H1(Ω) ≤ c(g,Ω).

Denote h(x) =
(
x
|x| , 0

)
. For any ε > 0 and r > 0, let

I(ε, r) = inf
u∈H1

h
(Br,S2)

Iε(u), I(ε) = I(ε, 1).

Then I(ε, r) = I( εr ), and we have the following:

Lemma 4.6 For 0 < t1 < t2, I(t1) ≤ π log t2
t1

+ I(t2). Especially for any 0 < t ≤ 1,
I(t) ≤ π log 1

t + I(1). We also know the limit γ0 = limt→0+ I(t) − π log 1
t exists.

Proof For 0 < t1 < t2, define

u(x) =




(
x

|x| , 0
)

for
1
t2

≤ |x| ≤ 1
t1
,

minimizer for I1 on H1
h(B 1

t2
, S2) for |x| < 1

t2
.

Then we have

I(t1) = I

(
1,

1
t1

)
≤ I1(u) = π log

t2
t1

+ I

(
1,

1
t2

)
= π log

t2
t1

+ I(t2).

Hence I(t) − π log 1
t is nondecreasing in t. Suppose uε minimizes Iε. Then from (4.5) we have∫

B1
|∇uε|2 ≥ 2π log 1

ε − c, where c is an absolute constant. Hence I(ε) − π log 1
ε ≥ −c.

Proof of Theorem 4.2 First we give an upper bound for Iε(uε) by choosing a comparison
function. For b1, . . . , bd, d different points in Ω, denote ub(x) =

(∏d
j=1

x−bj

|x−bj |e
ihb(x), 0

)
, where

hb is harmonic in Ω such that ub|∂Ω = g. Choose a ρ suitably small, for each j, we know
ub(x) =

(
x−bj

|x−bj |e
iΘj(x), 0

)
on Bρ(aj) and Θj is a harmonic function on Bρ(bj). For ε > 0, σ > 0

small, define

vε(x) =




ub(x) if x ∈ Ω\⋃d
j=1Bρ(bj),(

x− bj
|x− bj |e

i

(
Θj(bj)+

|x−bj |−(1−σ)ρ

σρ (Θj(x)−Θj(bj))

)
, 0
)

if x ∈ Bρ(bj)\B(1−σ)ρ(bj),

minimizing Iε in H1(
x−bj
|x−bj | e

iΘj(bj),0

) (B(1−σ)ρ(bj), S2
)

if x ∈ B(1−σ)ρ(bj).
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By the fact that

1
2

∫
Ω\
⋃d

j=1
Bρ(bj)

|∇ub|2 = πd log
1
ρ

+W (g,Ω, b) + o(1), (4.17)

and Lemma 4.6 we know

Iε(uε) ≤ Iε(vε) ≤ πd log
1
ε

+W (g,Ω, b) + dγ0 + α1(ε, σ, ρ) + α2(σ, ρ) + α3(σ), (4.18)

and
lim
ε→0+

α1(ε, σ, ρ) = 0, lim
ρ→0+

α2(σ, ρ) = 0, lim
σ→0+

α3(σ) = 0.

The lower bound is obtained through another comparison argument. Denote

u∗(x) =


 d∏
j=1

x− aj
|x− aj |e

iha(x), 0


 .

For ρ > 0 small, σ > 0 small, fixing j, we know u∗(x) =
(
x−aj

|x−aj |e
iΘj(x), 0

)
on a disk around aj .

Define

wε(x)=




uε(x) if x ∈ Bρ(bj),

Π
(

(1 + σ)ρ− |x|
σρ

uε(x) +
|x| − ρ

σρ
u∗(x)

)
if x ∈ B(1+σ)ρ(bj)\Bρ(bj),(

x− aj
|x− aj |e

i

(
Θj(bj)+

(1+2σ)ρ−|x−bj |
σρ (Θj(x)−Θj(bj))

)
, 0
)

if x ∈ B(1+2σ)ρ(bj)\B(1+σ)ρ(bj).

Here Π(ξ) = ξ
|ξ| for ξ ∈ R

3. From Lemma 4.6 we know

Iε(uε) ≥ 1
2

∫
Ωρ

|∇uε|2+πd log
ρ

ε
+dγ0−β̃1(ε, σ, ρ)−β̃2(σ, ρ)−β̃3(σ),

and limε→0+ β̃1(ε, σ, ρ)=0, limρ→0+ β̃2(σ, ρ)=0, limσ→0+ β̃3(σ)=0. Here Ωρ = Ω\⋃d
j=1Bρ(aj).

From Theorem 4.1 we know

Iε(uε) ≥ 1
2

∫
Ωρ

|∇u∗|2 + πd log
ρ

ε
+ dγ0 − β1(ε, σ, ρ) − β̃2(σ, ρ) − β̃3(σ)

≥ πd log
1
ε

+W (g,Ω, a) − β1(ε, σ, ρ) − β2(σ, ρ) − β3(σ), (4.19)

and limε→0+ β1(ε, σ, ρ) = 0, limρ→0+ β2(σ, ρ) = 0, limσ→0+ β3(σ) = 0. Combining (4.18) and
(4.19), we get

W (g,Ω, a) ≤W (g,Ω, b) + γ1(ε, σ, ρ) + γ2(σ, ρ) + γ3(σ),

and limε→0+ γ1(ε, σ, ρ) = 0, limρ→0+ γ2(σ, ρ) = 0, limσ→0+ γ3(σ) = 0. Letting ε → 0+, ρ → 0+

then σ → 0+, we get W (g,Ω, a) ≤ W (g,Ω, b). This proves the first assertion in Theorem 4.2.
It follows from (4.7) and (4.10) that

|∇uεi |2
log 1

εi

→ 2π
d∑
j=1

δaj .
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Now choose a ρ > 0 suitably small; it follows from Lemma 4.4 that

1
ε2

∫
Bρ(aj)

(
u3
ε

)2
+
ρ

2

∫
∂Bρ(aj)

|∂νuε|2ds =
ρ

2

∫
∂Bρ(aj)

|∂τuε|2ds+
ρ

2ε2

∫
∂Bρ(aj)

(
u3
ε

)2
ds.

By Theorem 4.1 we know

lim
k→∞

1
ε2k

∫
Bρ(aj)

(
u3
εk

)2
= −ρ

2

∫
∂Bρ(aj)

|∂νu∗|2ds+
ρ

2

∫
∂Bρ(aj)

|∂τu∗|2ds. (4.20)

On a small disk around aj we write u∗(x) =
(
x−aj

|x−aj |e
iΘj(x), 0

)
; under the polar coordinates we

know

ρ

2

∫
∂Bρ(aj)

(|∂τu∗|2 − |∂νu∗|2
)
ds =

ρ2

2

(∫ 2π

0

(
1
ρ2

(1 + ∂θΘj(ρ, θ))
2 − (∂rΘj(ρ, θ))

2

)
dθ

)

= π +
1
2

∫ 2π

0

(∂θΘj(ρ, θ))
2 dθ − ρ2

2

∫ 2π

0

(∂rΘj(ρ, θ))
2 dθ = π,

where we have used the Pohozaev identity for Θj in the last step. Hence via (4.20) one has

lim
k→∞

1
ε2k

∫
Bρ(aj)

(
u3
εk

)2
= π.

The latter fact, together with Theorem 4.1, implies(
u3
εk

)2
ε2k

→ π

d∑
j=1

δaj

in the sense of distribution. The asymptotic formula of Iε(uε) follows from (4.18) and (4.19).
The fact that |u3

ε|H1(Ω) ≤ c(g,Ω) follows from (4.8). The W 1,p-estimate for uε follows from
(4.12) and the Hölder inequality.

5 Radial Solutions

In this section we shall study some special solutions of Equation (2.1). The study of these
solutions would be helpful in the understanding of the dynamics of vortices. First let us look
at the following boundary value problem:

−�u =

(
|∇u|2 +

(
u3
)2

ε2

)
u− u3

ε2
e3 on B1, u(x) =

(
eiqθ, 0

)
for x ∈ ∂B1, (5.1)

where u ∈ C∞ (
B1, S

2
)
, q ∈ N.

Proposition 5.1 There exists a unique f = fε,q defined on [0, 1] such that f (0) = 0, f (1) =
π
2 and u =

(
sin f (r) eiqθ, cos f (r)

)
is a smooth solution to (5.1). In addition, f satisfies 0 <

f (t) ≤ π
2 , f ′ (t) > 0 for 0 < t ≤ 1.

Proof Existence : Suppose u =
(
sin ρ (r) eiqθ, cos ρ (r)

)
. Then

Iε (u) = π

∫ 1

0

(
rρ′ (r)2 +

q2

r
sin2 ρ (r) +

r cos2 ρ (r)
ε2

)
dr,
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and we call this functional Jε (ρ). Set

V =
{
ρ\ρ ∈ H1

loc (0, 1) ,
√
rρ′ ∈ L2 (0, 1) ,

1√
r
ρ ∈ L2 (0, 1) and ρ (1) =

π

2

}
.

Since

|ρ (r) | ≤ 1
r

∫ 2r

r

|ρ (t) |dt+
1
r

∫ 2r

r

|ρ (t) − ρ (r) |dt

≤ c


(∫ 2r

r

ρ (t)2

t
dt

) 1
2

+
(∫ 2r

r

tρ′ (t)2 dt
) 1

2


 ,

one has ρ ∈ C ([0, 1]) and ρ (0) = 0 for any ρ ∈ V . Choosing a minimizing sequence for Jε in
V , say ρj , then by the basic properties of trigonometric functions, we may assume 0 ≤ ρj ≤ π

2 .
Since sin ρj ≥ 2

πρj ≥ 0, one deduces supj
∫ 1

0
r
(
ρ′j
)2 + 1

rρ
2
j <∞. Assuming ρj ⇀ f in H1

loc (0, 1),
then f ∈ V and f is a minimizer. It must be smooth and it satisfies

f ′′ +
f ′

r
+
(

1
ε2

− q2

r2

)
sin 2f

2
= 0. (5.2)

This means the u corresponding to f is in H1
(
B1, S

2
)

and satisfies (5.1) in B1\{0}, hence on
the whole B1 by a standard removable singularity theorem for such equations.

Uniqueness : Suppose f satisfies (5.2) and f (0) = 0, f (1) = π
2 . We claim that 0 ≤ f ≤ π

2 .
To see this we define ϕ (t) = f (εet) for t ∈ (−∞, log 1

ε

]
. Then

ϕ′′ (t) =
(
q2 − e2t

)
sinϕ cosϕ, ϕ (−∞) = 0, ϕ

(
log

1
ε

)
=
π

2
. (5.3)

Choose a t0 such that |ϕ (t) | ≤ π
4 for any t ≤ t0 < log q. Then either ϕ (t) > 0 for all t ≤ t0

or ϕ (t) < 0 for all t ≤ t0. In fact, if this is not the case, then there exists a t1 ≤ t0 such that
ϕ (t1) = 0. From the uniqueness theorem of o.d.e. we know ϕ′ (t1) �= 0. If ϕ′ (t1) > 0, then
ϕ (t) < 0 for t < t1 and very close to t1; one easily deduces ϕ (t) < 0 for any t < t1 from (5.3).
Hence ϕ′′ (t) < 0; this, combining with ϕ′ (t1) > 0, implies that ϕ (−∞) = −∞, which is a
contradiction. Similarly, ϕ′ (t1) < 0 also leads to a contradiction. Let us assume ϕ (t) > 0 for
any t ≤ t0; then ϕ′ (t) > 0 for t ≤ t0. We claim ϕ′ (t) > 0 for any t ≤ log 1

ε ; then it follows that
0 < ϕ (t) ≤ π

2 . Indeed if ϕ′ vanishes at some points, set t1 = inf
{
t\t ≤ log 1

ε , ϕ
′ (t) = 0

}
. If t1 ≤

log q, we see ϕ (t1) ∈
(
kπ + π

2 , kπ + π
)

for some nonnegative integer k. By the choice of t1 we
know there exist t3 < t2 < t1 such that ϕ (t2) = kπ+π

2 , ϕ (t3) = 2kπ+π−ϕ (t1). On [t2, t1], since
ϕ′′ (t) ≥ (

q2 − e2t2
)
sinϕ cosϕ we get (ϕ′)2 − (

q2 − e2t2
)
sin2 ϕ|t1 ≥ (ϕ′)2 − (

q2 − e2t2
)
sin2 ϕ|t2 .

Similarly we get (ϕ′)2−(q2 − e2t2
)
sin2 ϕ|t2 ≥ (ϕ′)2−(q2 − e2t2

)
sin2 ϕ|t3 . These two inequalities

imply ϕ′ (t3) = 0, which is a contradiction. Hence t1 > log q, ϕ (t1) ∈ (
kπ, kπ + π

2

)
for some

nonnegative integer k. Similar arguments show that ϕ will be oscillating around kπ with
decreasing amplitude after t1. Hence it would not reach π

2 at log 1
ε , which again leads to a

contradiction. If ϕ (t) < 0 for t ≤ t0, then the above arguments also lead to a contradiction.
Hence we dotain the claim. Setting φ (t) = π

2 − ϕ (−t), ψ = φ−1, then ψ is a map from
[
0, π2

)
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to
[− log 1

ε ,∞
)
, which satisfies

ψ′′ (x) =
(
q2 − e−2ψ

)
(ψ′)3 sinx cos x, ψ (0) = − log

1
ε
, ψ

(π
2

)
= ∞, ψ′ > 0. (5.4)

Given two different solutions, say f1, f2, we may assume ϕ′
1

(
log 1

ε

)
> ϕ′

2

(
log 1

ε

)
> 0. Hence

ψ′
2 (0) > ψ′

1 (0) > 0. We observe that when ψ2 ≥ ψ1,

(ψ2 − ψ1)
′′ (x) ≥ (

q2 − e−2ψ1
) (

(ψ′
2)

2 + ψ′
2ψ

′
1 + (ψ′

1)
2
)

(ψ′
2 − ψ′

1) sinx cos x. (5.5)

Thus we get ψ′
2 > ψ′

1 on
[
0, π2

)
, ψ2 > ψ1 on

(
0, π2

)
. Choose an α ∈ (

π
4 ,

π
2

)
such that t2 =

ψ2 (α) > ψ1 (α) = t1 > − log q. Defining φ̃1 (t) = φ1 (t− t2 + t1) for t ≥ t2, then

φ̃′′1 (t) =
(
e−2(t+t1−t2) − q2

) sin 2φ̃1

2
≥ (

e−2t − q2
) sin 2φ̃1

2
. (5.6)

Since φ′′2 (t) =
(
e−2t − q2

)
sinφ2 cosφ2, φ̃1 (t2) = φ2 (t2) = α, φ̃′1 (t2) > φ′2 (t2), we deduce

φ̃1 (t) > φ2 (t) for t > t2. Hence φ̃′1 (t)− φ′2 (t) ≥ φ̃′1 (t2)− φ′2 (t2). φ̃′1 (t) ≥ φ̃′1 (t2)− φ′2 (t2) > 0.
The last statement contradicts the fact that φ̃1 (t) → π

2 as t→ ∞.
The main point in the above proof of uniqueness is to consider inverse functions. In fact,

Equation (5.3) corresponds to a pendulum with changing gravity, 2ϕ corresponds to the angle
between the pendulum and the upward vertical line. The reason for considering inverse functions
becomes clear after looking at this model. These types of equations also appear in the study of
equivariant harmonic maps. One may refer to [20], for example.

Now we go back to the equation

−�u =
(
|∇u|2 +

(
u3
)2)

u− u3e3, (5.7)

on the whole plane for u ∈ C∞ (
R

2, S2
)
. For q ∈ N fixed, if u =

(
sin f (r) eiqθ, cos f (r)

)
, then

Equation (5.7) changes into

f ′′ +
f ′

r
+
(

1 − q2

r2

)
sin 2f

2
= 0. (5.8)

To avoid the singularity at 0, we set ϕ (t) = f (et) for t ∈ R; then,

ϕ′′ =
(
q2 − e2t

)
sinϕ cosϕ. (5.9)

Proposition 5.2 There exists a unique f = fq defined on [0,∞) such that f (0) = 0, f (∞) =
π
2 and u =

(
sin f (r) eiqθ, cos f (r)

)
is a smooth solution to (5.7). In addition, f satisfies 0 <

f (t) < π
2 , f ′ (t) > 0 for t > 0.

Proof Existence : We look at (5.9) under the additional conditions ϕ (−∞) = 0, ϕ (∞) =
π
2 . For any a ∈ R, by Proposition 5.1 we have a ϕa defined on (−∞, a] such that ϕ′′

a =(
q2 − e2t

)
sinϕa cosϕa, ϕa (−∞) = 0, ϕa (a) = π

2 , 0 ≤ ϕa ≤ π
2 . We also know 0 < ϕa (t) < π

2 ,
ϕ′
a (t) > 0 for t < a. From the bounds on ϕa and the equation it satisfies, we deduce that any

order derivatives of ϕa are uniformly bounded for a large on any finite interval. Hence we may



Static Theory for Planar Ferromagnets and Antiferromagnets 565

find aj → ∞ such that ϕaj → ϕ in C∞ (R). The limit ϕ satisfies (5.9) and 0 ≤ ϕ ≤ π
2 , ϕ′ ≥ 0.

Next we want to show ϕ is nontrivial.

Claim 5.1 There exists an α > 0 such that ϕa (log q) ≥ α for a ≥ a0 = log 2q.

Proof of Claim 5.1 If this is not the case, then assume ϕa (log q) < α for some α > 0 small,
and a ≥ log 2q. Since ϕ′′

a ≤ q2 sinϕa cosϕa, we have (ϕ′
a)

2 − q2 sin2 ϕa is decreasing and
hence (ϕ′

a)
2 ≤ q2 sin2 ϕa. ϕ′

a (log q) ≤ q sinα ≤ qα. ϕa (a0) ≤ α + qα (a0 − log q) ≤ c (q)α.
From ϕ′′

a ≤ −3q2 sinϕa cosϕa for t ≥ a0 we know (ϕ′
a)

2 + 3q2 sin2 ϕa is decreasing, so 3q2 =
(ϕ′

a)
2 + 3q2 sin2 ϕa|a ≤ (ϕ′

a)
2 + 3q2 sin2 ϕa|a0 ≤ c (q)α2, which gives a contradiction when α is

small enough.

Claim 5.2 There exists a β > 0 such that ϕa (log q) ≤ π
2 − β for a ≥ a0 = log 2q.

Proof of Claim 5.2 Suppose ϕa (log q) ≥ π
2 − β for some a ≥ a0 and β small. Denoting

v = ϕ′
a (log q), then ϕ′

a (t) ≥ v − c (q)β for log q ≤ t ≤ a0 and hence β ≥ c (q) (v − c (q)β)+

which implies v ≤ c (q)β. ϕa
(
log q

2

) ≥ π
2 − c (q) v ≥ π

2 − c (q)β, but for t ≤ log q
2 , ϕ′′

a (t) ≥
3q2

4 sinϕa cosϕa. Hence (ϕ′
a)

2− 3q2

4 sin2 ϕa is increasing. 0 ≤ (ϕ′
a)

2− 3q2

4 sin2 ϕa|log q
2
≤ v2−c (q),

and this implies 1 ≤ c (q)β2 which can’t be true when β is small enough.
Now by Claim 5.1 and Claim 5.2 we obtain α ≤ ϕ (log q) ≤ π

2 − β, hence ϕ is not a
constant function. We deduce that ϕ′ > 0, 0 < ϕ < π

2 , ϕ (−∞) = 0, ϕ (∞) = π
2 . It follows

from the comparison function in Lemma 4.5 that ϕ exponentially decays at −∞, hence by a
direct computation we see u =

(
sin f (r) eiqθ, cos f (r)

)
has finite energy on B1. Finally by the

removable singularity theorem we know u is a smooth solution of (5.7).
Uniqueness : First we observe that the arguments in the uniqueness part of Proposition

5.1 tell us 0 ≤ f ≤ π
2 for any f which is a solution to the problem. If we have two different

solutions, say f1, f2, then we have the corresponding ϕ1, ϕ2. If there exists a t0 ∈ R such
that ϕ1 (t0) = ϕ2 (t0), we may use the proof of the uniqueness part in Proposition 5.1 to
get a contradiction. In fact, one only needs to replace

(−∞, log 1
ε

]
by (−∞, t0]. Without

loss of generality, we assume ϕ2 > ϕ1. Choose α ∈ (
π
4 ,

π
2

)
such that ϕ−1

2 (α) > log q, set
t1 = ϕ−1

1 (α) > ϕ−1
2 (α) = t2. Define ϕ̃2 (t) = ϕ2 (t− t1 + t2) for t ≥ t1. Then

ϕ̃′′
2 (t) =

(
q2 − e2(t+t2−t1)

)
sin ϕ̃2 cos ϕ̃2 >

(
q2 − e2t

)
sin ϕ̃2 cos ϕ̃2. (5.10)

Since ϕ′′
1 (t) =

(
q2 − e2t

)
sinϕ1 cosϕ1, ϕ̃2 (t1) = ϕ1 (t1) = α, we get ϕ′

2 (t2) = ϕ̃′
2 (t1) < ϕ′

1 (t1).
In fact if ϕ̃2

′ (t1) ≥ ϕ′
1 (t1), then by the Taylor’s expansion formula we would have ϕ̃2 (t) > ϕ1 (t)

for t > t1 and very close to t1. But when ϕ̃2 ≥ ϕ1, we have ϕ̃′′
2 (t) > ϕ′′

1 (t), thus one deduces
that ϕ̃2 (t) > ϕ1 (t) for t > t1 and ϕ̃′

2 (t) − ϕ′
1 (t) is strictly increasing. It contradicts the fact

ϕ̃′
2 (t) → 0, ϕ′

1 (t) → 0 as t→ ∞. Now the fact ϕ′
2 (t2) < ϕ′

1 (t1) and the arguments in the proof
of the uniqueness part of Proposition 5.1 (especially (5.5), (5.6)) give us another contradiction.

We will study the stability properties of those solutions given in Proposition 5.1. For degree
1 solutions, we have:

Proposition 5.3 If q = 1, then the radial solution given in Proposition 5.1 is strictly stable,
hence a local minimizer.
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For higher-degree solutions, we have:

Proposition 5.4 If q ≥ 2, then for 0 < ε ≤ ε (q), the solution given in Proposition 5.1 is
unstable.

Here we basically use the idea presented in [9]. Some preparations are needed. First, we
would like to establish some qualitative properties of the function f in Propositions 5.1 and 5.2.

Lemma 5.1 The function f in Proposition 5.1 satisfies f ∈ C∞ ([0, 1]), f (k) (0) = 0 for
0 ≤ k ≤ q − 1 and f (q) (0) > 0.

Proof Define a function g on [−1, 1] by setting g (r) = (−1)q f (−r) for −1 ≤ r ≤ 0 and
g (r) = f (r) for 0 ≤ r ≤ 1. It follows from the proof of Proposition 5.1 that g is smooth, hence
f is smooth on [0, 1]. By using the Taylor expansion in (5.2) we get the conclusion.

Lemma 5.2 The function f in Proposition 5.2 satisfies f ∈ C∞ ([0,∞)), f (k) (0) = 0 for
0 ≤ k ≤ q − 1, f (q) (0) > 0 and π

2 − f , f (l) exponentially decay at ∞, for any l ∈ N.

Proof The proof of the first part of Lemma 5.2 is exactly the same as in Lemma 5.1. The
exponential decay property follows from Equation (5.9) and a comparison argument using the
function in Lemma 4.5.

We note the method in the above proof is the same as that in the proof of Lemma 2.2 in
[21], which is the first step for the shooting method.

By scaling we may assume the parameter ε = 1, but the domain changes from the unit
ball to the ball with radius R = 1

ε . To employ the arguments in [9], we use the stereographic
projection Γ as defined in (4.1). Given a map u : BR → S2\ {(0, 0,−1)}, denoting v = Γ−1 ◦ u,
then

I1 (u) =
1
2

∫
BR

(
|∇u|2 +

(
u3
)2)

dx =
∫
BR

2
(1 + |v|2)2

(
|∇v|2 +

(
1 − |v|2)2

4

)
dx. (5.11)

We call this functional J (v). Then for any w ∈ H1
0 (BR,C), we have

J ′′ (v) (w) = 4
∫
BR

[
|∇w|2

(1 + |v|2)2 − 8〈v,w〉〈∇v,∇w〉
(1 + |v|2)3 − 2|∇v|2|w|2

(1 + |v|2)3

−
(
1 − |v|2) |w|2
(1 + |v|2)3 +

12|∇v|2〈v,w〉2
(1 + |v|2)4 +

4
(
2 − |v|2) 〈v,w〉2
(1 + |v|2)4

]
dx. (5.12)

Note that the solution in Proposition 5.1 corresponds to v = ρ (r) eiqθ, where ρ = tan f(εr)
2 and

it satisfies

−
(

rρ′

(1 + ρ2)2

)′
− 2rρρ′2

(1 + ρ2)3
+
(
q2

r
− r

)
1 − ρ2

(1 + ρ2)3
ρ = 0. (5.13)

(5.13) is equivalent to

ρ′′ =
2ρρ′2

1 + ρ2
− ρ′

r
+
(
q2

r2
− 1

)
1 − ρ2

1 + ρ2
ρ. (5.14)

By Lemma 5.1 and Proposition 5.1, ρ has the following properties:

ρ ∈ C∞ ([0, R]) , ρ(k) (0) = 0 for 0 ≤ k ≤ q − 1, ρ(q) (0) > 0, (5.15)
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and

0 < ρ (r) ≤ 1, ρ′ (r) > 0 for 0 < r ≤ R. (5.16)

We shall need the following elementary lemma later:

Lemma 5.3 r2ρ2 + r2ρ′2 − q2ρ2 is a strictly increasing function in r. In particular, rρ2 +
rρ′2 − q2ρ2

r ≥ 0.

Proof Denote ψ (r) = r2ρ2 + r2ρ′2 − q2ρ2. By Equation (5.14) we obtain

ψ′ (r) =
4ρρ′

1 + ρ2
ψ (r) + 2rρ2 ≥ 4ρρ′

1 + ρ2
ψ (r) , (5.17)

which together with ψ (0) = 0 implies ψ (r) ≥ 0. Going back to Equation (5.17), we conclude
that ψ is strictly increasing.

From Proposition 6.2 and Lemma 5.3, we may deduce that the radial solutions uε,q =(
sin fε,q (r) eiqθ, cos fε,q (r)

)
, where fε,q is the function in Proposition 5.1, satisfy uε,q → (0, 0, 1)

in C∞ (B1) as q → ∞ for any fixed ε > 0. Moreover, |uε,q − (0, 0, 1) |L∞(Br) = O
(

1
q

)
, for any

r ∈ (0, 1). Indeed, the quantity r2f2 + r2f ′2 − d2f2 (see formula (21) in [9]) could be used to
give a simple proof of Theorem 2, Part (b) in [9].

Now we proceed to the proof of the stability of degree 1 solutions. We follow closely the
method in [9]. In contrast to the second variation formula in [9], formula (5.12) has additional
first-order terms.

Proof of Proposition 5.3 Denote Q (w) = J ′′ (v) (w). To show Q (w) ≥ α|w|2
H1

0(BR,C)
for some

α > 0, we only need to show Q (w) > 0 for any w �= 0. Indeed if this is the case, set

α = inf
{
Q (w) \w ∈ H1

0 (BR,C) , |w|H1
0 (BR,C) = 1

}
,

α ≥ 0. If α = 0, then there exists wj ∈ H1
0 (BR,C), |wj |H1

0 (BR,C) = 1 and Q (wj) → 0. We may
assume wj ⇀ w in H1

0 (BR,C), then Q (w) = 0. This implies w = 0, wj → 0 in L2 (BR). Since
Q (wj) → 0, it follows that

∫
BR

|∇wj |2
(1+|v|2)2

dx → 0, and we obtain a contradiction. Thus α must
be positive. Now for any w ∈ H1

0 (BR,C), we write it as

w =
∑
n∈Z

an (r) einθ; (5.18)

then

1
2π

∫
BR

|w|2 =
∑
n∈Z

∫ R

0

r|an (r) |2dr. (5.19)

1
2π

∫
BR

|∇w|2 =
∑
n∈Z

∫ R

0

r

(
|a′n (r) |2 +

n2

r2
|an (r) |2

)
dr. (5.20)
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1
8π
Q(w) =

∑
n∈Z

∫ R

0

[
r

(1 + ρ2)2

(
|a′n|2 +

n2

r2
|an|2

)

−
(

2r(ρ
′2 + ρ2

r2 )
(1 + ρ2)3

+
r(1 − ρ2)
(1 + ρ2)3

)
|an|2

+
(

3rρ2(ρ′2 + ρ2

r2 )
(1 + ρ2)4

+
rρ2(2 − ρ2)
(1 + ρ2)4

)
|a1+n + ā1−n|2

− 2rρ
(1 + ρ2)3

(a1+n + ā1−n)
(
ρ′(a′1−n + ā′1+n)

+
ρ

r2
((1 − n)a1−n + (1 + n)ā1+n)

)]
dr. (5.21)

By integration by parts and using Equation (5.14), noticing also that the quantities in (5.19)
and (5.20) are finite, we get

1
8π
Q (w) =

∫ R

0

[
r

(1 + ρ2)2
∑
n∈Z

|a′n|2 +
1

r (1 + ρ2)2
∑
n∈Z

n2|an|2

−

2r

(
ρ′2 + ρ2

r2

)
(1 + ρ2)3

+
r
(
1 − ρ2

)
(1 + ρ2)3


∑

n∈Z

|an|2

+
2
(
rρ2 + rρ′2 + ρ2

r + 2ρ4

r

)
(1 + ρ2)4

(
2|Re (a1) |2 +

∞∑
n=1

|a1+n + a1−n|2
)

− 4ρ2

r (1 + ρ2)3

(∑
n∈Z

n|an|2 +Re
(
a2
1

)
+ 2

∞∑
n=1

Re (a1−na1+n)

)]
dr

≥
∫ R

0

[
r

(1 + ρ2)2
∑
n∈Z

|a′n|2 +
4|a2|2

r (1 + ρ2)2
+

1
r (1 + ρ2)2

∑
n
=0,2

|an|2

−

2r

(
ρ′2 + ρ2

r2

)
(1 + ρ2)3

+
r
(
1 − ρ2

)
(1 + ρ2)3


∑

n∈Z

|an|2

+
2
(
rρ2 + rρ′2 + ρ2

r + 2ρ4

r

)
(1 + ρ2)4

∞∑
n=1

|a1+n + a1−n|2

+
4
(
rρ2 + rρ′2 − ρ2

r

)
(1 + ρ2)4

|Re (a1) |2 − 8ρ2

r (1 + ρ2)3
(|a2|2 +Re (a0a2)

) ]
dr

≥
∫ R

0

[
r

(1 + ρ2)2
∑
n∈Z

|a′n|2 +
4|a2|2

r (1 + ρ2)2
+

1
r (1 + ρ2)2

∑
n
=0,2

|an|2

−

2r

(
ρ′2 + ρ2

r2

)
(1 + ρ2)3

+
r
(
1 − ρ2

)
(1 + ρ2)3


∑

n∈Z

|an|2

+
2
(
rρ2 + rρ′2 + ρ2

r + 2ρ4

r

)
(1 + ρ2)4

∞∑
n=1

|a1+n + a1−n|2
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− 8ρ2

r (1 + ρ2)3
(|a2|2 +Re (a0a2)

) ]
dr. (5.22)

where we have used Lemma 5.3. Set b0 = a0, b1 =
(∑

n
=0,2 |an|2
) 1

2
, b2 = a2. Then

1
8π
Q (w) ≥

∫ R

0

[
r
(|b′0|2 + |b′1|2 + |b′2|2

)
(1 + ρ2)2

+
|b1|2 + 4|b2|2
r (1 + ρ2)2

−

2r

(
ρ′2 + ρ2

r2

)
(1 + ρ2)3

+
r
(
1 − ρ2

)
(1 + ρ2)3


(|b0|2 + |b1|2 + |b2|2

)

+
2
(
rρ2 + rρ′2 + ρ2

r + 2ρ4

r

)
(1 + ρ2)4

|b0 + b2|2

− 8ρ2

r (1 + ρ2)3
(|b2|2 +Re (b0b2)

) ]
dr. (5.23)

Define

Q1 (b1) =
∫ R

0


 r|b′1|2

(1 + ρ2)2
+

|b1|2
r (1 + ρ2)2

−

2r

(
ρ′2 + ρ2

r2

)
(1 + ρ2)3

+
r
(
1 − ρ2

)
(1 + ρ2)3


 |b1|2


dr. (5.24)

We want to show for any real-valued nonzero b1 ∈ H1
loc ((0, R]), if

∫ R
0

(
r|b′1|2 + |b1|2

r

)
dr < ∞

and b1 (R) = 0, then Q1 (b1) > 0. To do this we need the following:

Lemma 5.4 v = ρ (r) eiθ is the unique minimizer for J in the class

E =
{
ṽ\ṽ = g (r) eiθ, ṽ ∈ H1 (BR,C) , g (R) = ρ (R) = 1

}
.

Proof We see there is at least one minimizer by the direct method. For any ṽ in E , we have

J (ṽ) = 4π
∫ R

0

r

(1 + |g|2)2
(
|g′|2 +

|g|2
r2

+

(
1 − |g|2)2

4

)
dr ≥ J

(|g (r) |eiθ) .
If ṽ is a minimizer, then so is |g|eiθ, and hence |g| satisfies (5.14) with ρ replaced by |g|. By
considering 2 arctan (|g|) and using the uniqueness part of Proposition 5.1 we know |g| = ρ.
But if g = |g|eiϕ, then we have |g′|2 = |g|′2 + |g|2|ϕ′|2, hence g = ρ, ṽ = v.

Lemma 5.4 yields

Q1 (b1) =
1
8π
J ′′ (v)

(
ib1e

iθ
) ≥ 0.

If for some nonzero real b1, Q1 (b1) = 0, then

−
(

rb′1
(1 + ρ2)2

)′
− 2rρ′2b1

(1 + ρ2)3
+
(

1
r
− r

)
1 − ρ2

(1 + ρ2)3
b1 = 0. (5.25)

Note also b1 (0) = b1 (R) = 0. Multiplying equation (5.25) by ρ and equation (5.13) by b1, after
integration by parts we get b′1 (R) = 0, which implies b1 ≡ 0, and we obtain a contradiction.
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Hence Q1 is strictly positive. To deal with the remaining part, we define

Q2 (b0, b2) =
∫ R

0

[
r

(1 + ρ2)2
(|b′0|2 + |b′2|2

)
+

4|b2|2
r (1 + ρ2)2

−

2r

(
ρ′2 + ρ2

r2

)
(1 + ρ2)3

+
r
(
1 − ρ2

)
(1 + ρ2)3


(|b0|2 + |b2|2

)

+
2
(
rρ2 + rρ′2 + ρ2

r + 2ρ4

r

)
(1 + ρ2)4

|b0 + b2|2

− 8ρ2

r (1 + ρ2)3
(|b2|2 +Re (b0b2)

) ]
dr. (5.26)

Another equivalent form for Q2 is the following:

Q2 (b0, b2) =
∫ R

0


 r

(1 + ρ2)2
(|b′0|2 + |b′2|2

)
+

4
(
rρ2 + rρ′2 − ρ2

r

)
(1 + ρ2)4

Re (b0b2)

+

(
− 2rρ2ρ′2

(1 + ρ2)4
+
r
(
ρ4 + 2ρ2 − 1

)
(1 + ρ2)4

+
2ρ4

r (1 + ρ2)4

)
|b0|2

+

(
− 2rρ2ρ′2

(1 + ρ2)4
+
r
(
ρ4 + 2ρ2 − 1

)
(1 + ρ2)4

+
4 − 2ρ4

r (1 + ρ2)4

)
|b2|2

]
dr. (5.27)

For real-valued b0, b2, we denote

Q̃2 (b0, b2) = Q2 (b0,−b2) . (5.28)

Then from Lemma 5.3, we know

Q2 (b0, b2) ≥ Q̃2 (|b0|, |b2|) .

Set

m = inf

{
Q̃2 (b0, b2) \b0, b2 ∈ H1

loc ((0, R] ,R) , b0 (R) = b2 (R) = 0,
∫ R

0

r
(
b20 + b22

)
= 1

}
.

If b0, b2 are minimizers, then we may assume b0 ≥ b2 ≥ 0. In fact, one simply replaces b0 by
max{|b0|, |b2|} and b2 by min{|b0|, |b2|}; the value of Q̃2 decreases under this process because
of (5.26), (5.27), (5.28) and Lemma 5.3. The minimizers b0 and b2 satisfy

mrb0 = −
(

rb′0
(1 + ρ2)2

)′
+

(
− 2rρ2ρ′2

(1 + ρ2)4
+
r
(
ρ4 + 2ρ2 − 1

)
(1 + ρ2)4

+
2ρ4

r (1 + ρ2)4

)
b0

−
2
(
rρ2 + rρ′2 − ρ2

r

)
(1 + ρ2)4

b2. (5.29)
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mrb2 = −
(

rb′2
(1 + ρ2)2

)′
+

(
− 2rρ2ρ′2

(1 + ρ2)4
+
r
(
ρ4 + 2ρ2 − 1

)
(1 + ρ2)4

+
4 − 2ρ4

r (1 + ρ2)4

)
b2

−
2
(
rρ2 + rρ′2 − ρ2

r

)
(1 + ρ2)4

b0. (5.30)

If we define A = b0−b2
2 ≥ 0, B = b0+b2

2 ≥ 0, then

mrA = −
(

rA′

(1 + ρ2)2

)′
+

(
2r
(
1 − ρ2

)
ρ′2

(1 + ρ2)4
+
r
(
ρ4 + 4ρ2 − 1

)
(1 + ρ2)4

+
2
(
1 − ρ2

)
r (1 + ρ2)4

)
A

+
2
(
ρ2 − 1

)
r (1 + ρ2)3

B. (5.31)

mrB = −
(

rB′

(1 + ρ2)2

)′
+

(
− 2rρ′2

(1 + ρ2)3
− r

(
1 − ρ2

)
(1 + ρ2)3

+
2

r (1 + ρ2)3

)
B

+
2
(
ρ2 − 1

)
r (1 + ρ2)3

A. (5.32)

Denoting A1 = ρ′ > 0, B1 = ρ
r > 0, then

0 = −
(

rA′
1

(1 + ρ2)2

)′
+

(
2r
(
1 − ρ2

)
ρ′2

(1 + ρ2)4
+
r
(
ρ4 + 4ρ2 − 1

)
(1 + ρ2)4

+
2
(
1 − ρ2

)
r (1 + ρ2)4

)
A1

+
2
(
ρ2 − 1

)
r (1 + ρ2)3

B1. (5.33)

0 = −
(

rB′
1

(1 + ρ2)2

)′
+

(
− 2rρ′2

(1 + ρ2)3
− r

(
1 − ρ2

)
(1 + ρ2)3

+
2

r (1 + ρ2)3

)
B1

+
2
(
ρ2 − 1

)
r (1 + ρ2)3

A1. (5.34)

Multiplying (5.31) and (5.32) by A1 and B1, respectively, and multiplying (5.33) and (5.34)
by A and B, respectively, then after integrating by parts, we get −m ∫ R

0
r (AA1 +BB1) dr =

R
4 (A1 (R)A′ (R) +B1 (R)B′ (R)) .

Observing A and B reach a minimum at R, we get m ≥ 0. If m = 0, then A′ (R) =
B′ (R) = 0. The latter fact together with (5.31), (5.32) shows A = B = 0. Hence b0 = b2 = 0,
we obtain a contradiction. Grouping the above two results together, also using (5.23) we get
Q (w) > 0 for any w �= 0. Finally to prove u is a local minimizer, we only need to observe
I1 (ũ) = I1

(
ũ1, ũ2, |ũ3|) and the continuity of the map which sends ũ to

(
ũ1, ũ2, |ũ3|).

Proof of Proposition 5.4 Suppose q ≥ 2. For each R > 0, we have

uR =
(
sin f 1

R ,q

( r
R

)
eiqθ, cos f 1

R ,q

( r
R

))
, u =

(
sin fq (r) eiqθ, cos fq (r)

)
,

vR = Γ−1 ◦ uR = ρR (r) eiqθ, v = Γ−1 ◦ u = ρ (r) eiqθ.
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Here Γ is the stereographic projection defined in (4.1) and f 1
R ,q

, fq are the solutions in Proposi-
tions 5.1 and 5.2 respectively. From Proposition 6.2 we know for any R0 > 0, sup|x|≤R0,R≥R0+1

|∇ uR (x) | ≤ c, where c is an absolute constant. Following the proof of Proposition 5.2 one gets
uR → u in C∞ (

R
2, S2

)
. Hence for any w ∈ H1

(
R

2,C
)

with compact support, J ′′ (vR) (w) →
J ′′ (v) (w) as R→ ∞. To establish the instability, it suffices to find a w ∈ H1

(
R

2,C
)

such that
J ′′ (v) (w) < 0. The idea for choosing such a w is from [22]. We take

w =
(
ρ′

r
+
qρ

r2

)
ei(q−2)θ +

(
ρ′

r
− qρ

r2

)
ei(q+2)θ;

by Lemma 5.2 we see ρ = tan fq

2 satisfies (5.14) and

ρ ∈ C∞ ([0,∞)) , ρ(k) (0) = 0 for 0 ≤ k ≤ q − 1, ρ(q) (0) > 0. (5.35)

Moreover,

0 < ρ (r) < 1, ρ′ (r) > 0 for r > 0, 1 − ρ, ρ(l) exponentially decay at ∞, l ∈ N. (5.36)

From these we conclude that w ∈ H1
(
R

2,C
)
. Plugging v and w into (5.12), using (5.14), (5.35)

and (5.36) we get
1

16π
J ′′ (v) (w) = −

∫ ∞

0

2
(
ρ− ρ3

)
ρ′

r2 (1 + ρ2)3
dr < 0. (5.37)

This completes the proof.

6 Quantization

In this section we shall study the solution of Equation (5.7) on the whole plane for u ∈
C∞ (

R
2, S2

)
satisfying certain growth conditions.

Proposition 6.1 Suppose u ∈ C∞ (
R

2, S2
)

satisfies (5.7) on R
2, u3 → 0 as |x| → ∞ and

there exists c > 0 such that∫
Br

(
|∇u|2 +

(
u3
)2) ≤ c log r for r ≥ 2. (6.1)

Then
∫

R2

(
u3
)2 = πd2, where d is the degree of u′

|u′| at ∞, u′ =
(
u1, u2

)
. Moreover,

|Dku3 (x) | ≤ c (k, u) e−c|x|, c > 0, c (k, u) > 0, for any k ≥ 0,

|Dku (x) | ≤ c (k, u)
|x|k for k ≥ 1.

If we write u1 + iu2 = ρei(dθ+ψ) outside ball BR0 , then |∇ψ (x) | = O
(

1
|x|2

)
.

We note that those radial solutions given in Proposition 5.2 satisfy all conditions in Proposition
6.1 and

∫
R2

(
u3
)2 = πq2.

Proof of Proposition 6.1 We start with the following:
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Claim 6.1
∫

R2

(
u3
)2
dx <∞.

Proof of Claim 6.1 Denote φ(r) =
∫
∂Br

[
|∇u|2 +

(
u3
)2]

ds. For r ≥ 4, we have

c log r ≥
∫
Br

[
|∇u|2 +

(
u3
)2]

dx =
∫ r

0

φ(ρ)dρ

≥
∫ r

√
r

φ(ρ)ρ
ρ

dρ ≥ 1
2

log r inf√
r≤ρ≤r

ρφ(ρ),

hence inf√r≤ρ≤r ρφ(ρ) ≤ 2c. We may find a sequence rj → ∞ such that rjφ(rj) ≤ 2c. From
Lemma 4.4 we know∫

Br

(
u3
)2

+
r

2

∫
∂Br

|∂νu|2ds =
r

2

∫
∂Br

|∂τu|2ds+
r

2

∫
∂Br

(
u3
)2
ds. (6.2)

Hence ∫
Brj

(
u3
)2 ≤ rj

2

∫
∂Brj

(
|∂τu|2 +

(
u3
)2)

ds ≤ rj
2
φ (rj) ,

which implies
∫

R2

(
u3
)2
dx ≤ c <∞.

By assumptions, we may choose R0 > 0 such that |u3(x)| ≤ 1
2 on R

2\BR0 , then u′ =
u1 + iu2 = ρeiϕ, where ρ = |u′| ≥

√
3

2 , ϕ = dθ + ψ, d being the degree of u′/|u′| at ∞, ψ being
a single-valued smooth function on R

2\BR0 . Computation shows div
(
ρ2∇ϕ) = 0.

Claim 6.2
∫

R2\BR0
|∇ψ|2 <∞.

Proof of Claim 6.2 Denote AR = BR\BR0 , ψR = 1
2πR

∫
∂BR

ψ. Then∫
AR

ρ2 (d∇θ + ∇ψ) · ∇ψ =
∫
AR

div
(
ψρ2∇ϕ)

=

(∫
∂BR

−
∫
∂BR0

)
ρ2 ∂ϕ

∂ν
ψds =

∫
∂BR

ρ2 ∂ψ

∂ν
(ψ − ψR) ds− c(u).

Here we use the fact that
∫
∂BR

ρ2 ∂ψ
∂ν ds = 0, which results from∫

∂BR

ρ2 ∂ψ

∂ν
ds =

∫
∂BR

u′ × ∂νu
′ds =

∫
BR

div (u′ × ∂1u
′, u′ × ∂2u

′) dx = 0.

Since
∫
∂Br

∇θ · ∇ψds = 0, we get

∫
AR

ρ2|∇ψ|2 ≤
∫
∂BR

∣∣∣∣∂ψ∂ν
∣∣∣∣|ψ − ψR|ds+

∫
AR

(
1 − ρ2

) |d|
r
|∇ψ| + c(u).

By the Hölder and Poincaré inequalities we have∫
∂BR

∣∣∣∣∂ψ∂ν
∣∣∣∣|ψ − ψR|ds ≤ R

2

∫
∂BR

|∇ψ|2ds,

and ∫
AR

(
1 − ρ2

) |d|
r
|∇ψ| ≤ |d|

R0

(∫
AR

(
u3
)4) 1

2
(∫

AR

|∇ψ|2
) 1

2

≤ c(u)
(∫

AR

|∇ψ|2
) 1

2

.
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It follows that ∫
AR

|∇ψ|2 ≤ c0R

∫
∂BR

|∇ψ|2ds+ c(u).

Since
∫
AR

|∇ψ|2 ≤ c(u) logR, by choosing a generic R we get
∫

R2\BR0
|∇ψ|2 ≤ c(u) <∞.

Claim 6.3
∫

R2 |∇u3|2 <∞.

Proof of Claim 6.3 In fact, multiplying the third component’s equation by u3 and integrating
by parts we get∫

AR

|∇u3|2 +
(
u3
)2

=
∫
AR

(
|∇u|2 +

(
u3
)2) (

u3
)2

+
∫
∂BR

u3 ∂u
3

∂ν
ds−

∫
∂BR0

u3 ∂u
3

∂ν
ds.

Hence∫
AR

1 − 2
(
u3
)2

1 − (u3)2
|∇u3|2 +

(
u3
)2

=
∫
AR

(
u3
)2
ρ2|∇ϕ|2 +

∫
∂BR

u3 ∂u
3

∂ν
ds−

∫
∂BR0

u3 ∂u
3

∂ν
ds

≤ 2d2

R2
0

∫
R2

(
u3
)2

+ 2
∫
AR

|∇ψ|2 +
∫
∂BR

u3 ∂u
3

∂ν
ds−

∫
∂BR0

u3 ∂u
3

∂ν
ds

≤ c(u) +
(
R

∫
∂BR

|∇u3|2ds
) 1

2

.

Choose Rj → ∞ such that Rj
∫
∂BRj

|∇u3|2ds ≤ 2c is independent of j, then
∫

R2 |∇u3|2 ≤ c(u).
For ρ we have ∫

R2\BR0

|∇ρ|2 =
∫

R2\BR0

(
u3
)2 |∇u3|2

1 − (u3)2
<∞.

One observes that

|∂τu′|2 = |∂τρ|2 +
d2ρ2

r2
+

2ρ2d∂τψ

r
+ ρ2 (∂τψ)2 , |∂νu′|2 = (∂νρ)

2 + ρ2 (∂νψ)2 .

Also by (6.2) one sets ∫
Br

(
u3
)2

= πd2 + R,

where

|R| ≤ c(u)

(
r

∫
∂Br

(
|∇ρ|2 + |∇ψ|2 + |∇u3|2 +

(
u3
)2)

ds+
(
r

∫
∂Br

|∇ψ|2ds
) 1

2
)
.

Using the fact that
∫

R2\BR0
|∇ρ|2 + |∇ψ|2 + |∇u3|2 +

(
u3
)2
< ∞, we may find rj → ∞ such

that
rj

∫
∂Brj

(
|∇ρ|2 + |∇ψ|2 + |∇u3|2 +

(
u3
)2)

ds→ 0.

Hence
∫

R2

(
u3
)2
dx = πd2. Next we look at e(u) = 1

2

[
|∇u|2 +

(
u3
)2]. Fixing an x, letting

R = |x|, for δ > 0 small, R > 2R0, we have∫
B(1+δ)R\B(1−δ)R

|∇u|2 =
∫
B(1+δ)R\B(1−δ)R

|∇u3|2 + |∇ρ|2 + ρ2|∇ (dθ + ψ) |2

≤ 4πd2 log
1 + δ

1 − δ
+
∫
B(1+δ)R\B(1−δ)R

|∇u3|2 + |∇ρ|2 + 2|∇ψ|2.
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Since
∫

R2\BR0
|∇u3|2 + |∇ρ|2 + 2|∇ψ|2 +

(
u3
)2 is finite, one can make

∫
B(1+δ)R\B(1−δ)R

e(u)
arbitrarily small if one takes R sufficiently large and δ sufficiently small. Using Lemma 2.3 and
Lemma 2.4 on BδR(x), we get e(u)(x) ≤ c(u)

|x|2 . Hence |∇u(x)| ≤ c(u)
|x| . Next we let R0 be large

enough such that for |x| ≥ R0, |∇u(x)|2 +
(
u3(x)

)2 ≤ 3
4 . Then from the third component’s

equation and the comparison function in Lemma 4.5 we get that u3(x) exponentially decays at
infinity. The estimate of |∇u3(x)| follows from the standard elliptic estimates. By scaling, the
Schauder theory, and induction we get the estimates for |Dku| and |Dku3|. We note that ψ
satisfies

�ψ = −2∇ρ · ∇ϕ
ρ

= f on R
2\BR0 , (6.3)

where |f (x) | ≤ c (u) e−c|x|. Consider the Kelvin transformation of ψ defined by ψ̃ (x) =
ψ
(

x
|x|2

)
for x ∈ B 1

R0
; then

�ψ̃ = f̃ on B 1
R0

\{0}, f̃ (x) =
1

|x|4 f
(

x

|x|2
)
,

∫
B 1

R0

|∇ψ̃|2 =
∫

R2\BR0

|∇ψ|2 <∞. (6.4)

We also have |∇ψ̃(x)| = 1
|x|2 |∇ψ( x

|x|2 )|. Since |f̃ (x) | ≤ c(u)
|x|4 e

− c
|x| → 0 as x → 0, from the

removable singularity theorem we get ψ̃ ∈ C1 (B1) and |∇ψ (x) | = O( 1
|x|2 ).

Remark 6.1 Suppose we have a u ∈ C∞ (
R

2, S2
)

satisfying (5.7) and
∫

R2 |∇u|2 <∞. Then
u must be a constant which is equal to (0, 0, 1) or (0, 0,−1) or a point in S1. In fact, we may
get an L∞ bound of ∇u by Lemma 2.3 and Lemma 2.4. Multiplying the equation of the third
component by u3 and integrating by parts we get∫

BR

|∇u3|2 +
(
u3
)2

=
∫
BR

(
|∇u|2 +

(
u3
)2) (

u3
)2

+
∫
∂BR

u3∂νu
3ds.

By choosing a sequence of generic R’s which goes to ∞, one can obtain∫
R2

(
u3
)2 (

1 − (
u3
)2)

dx <∞.

This last statement and the gradient bounds implies either
∫

R2

(
u3
)2
dx or

∫
R2(1 − (u3)2)dx

must be finite; now by using (6.2) for a generic r, we get the conclusion.
The next proposition shows any smooth solution of (5.7) with an image in the open upper

half sphere satisfies the gradient estimate.

Proposition 6.2 Suppose u ∈ C∞ (
B1, S

2
)

satisfies (5.7) on B1, u3 ≥ 0. Then either u3 ≡ 0
or |∇u (x) | ≤ c

1−|x| for x ∈ B1, where c is an absolute constant.

Proof Suppose the proposition is false; then we might find a sequence uj ∈ C∞ (
B1, S

2
)

satisfying (5.7) on B1, u3
j ≥ 0, u3

j not identically zero and

Kj = sup
x∈B1

(1 − |x|) |∇uj (x) | → ∞.

By Harnack’s inequality one has u3
j > 0 in B1, hence the first eigenvalue of the operator

−� + (1 − (|∇uj |2 + (u3
j )

2)) on Br with the Dirichlet boundary condition is positive, for any
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0 < r < 1. This implies that for any ψ ∈ C∞
c (B1),∫

B1

|∇ψ|2 + ψ2 ≥
∫
B1

(
|∇uj |2 +

(
u3
j

)2)
ψ2. (6.5)

Choose xj ∈ B1 such that Kj = (1 − |xj |) |∇uj (xj) |, put σj = 1 − |xj |, define vj (x) =
uj

(
xj + σj

Kj
x
)

for x ∈ BKj . Then

−�vj =

(
|∇vj |2 +

σ2
j

(
v3
j

)2
K2
j

)
vj −

σ2
j v

3
j

K2
j

e3 on BKj ,

|∇vj (x) | ≤ 1

1 − |x|
Kj

, |∇vj (0) | = 1, v3
j ≥ 0.

Hence |vj |C1,α(Br) ≤ c (α, r) for 0 < α < 1, r > 0. After passing to a subsequence we may

assume vj → v in C∞ (
R

2
)
. Then v ∈ C∞ (

R
2, S2

)
and

−�v = |∇v|2v on R
2, |∇v (x) | ≤ 1, v3 (x) ≥ 0, |∇v (0) | = 1.

By Lemma 3.2, v(x) = (ei(c0+c1x
1+c2x

2), 0), c0, c1, c2 being real constants with c21 + c22 = 1. On
the other hand, by choosing a suitable ψ in (6.5) we have, for any R > 0,∫

BR

|∇vj |2 =
∫
B σj

Kj
R

(xj)

|∇uj |2 ≤ c+ c
σ2
j

K2
j

R2,

where c is an absolute constant. Letting j → ∞, we get
∫
BR

|∇v|2 ≤ c, hence πR2 ≤ c for any
R, which is a contradiction.

For the gradient estimate up to the boundary, we have the following proposition which in
fact deals with more general solutions than Theorem 3.1:

Proposition 6.3 Suppose Ω ⊂ R
2 is a bounded open domain with smooth boundary and

g : ∂Ω → S1 is a smooth map. If uε ∈ C∞ (
Ω, S2

)
satisfies (2.1) and u3

ε > 0 in Ω, then for
0 < ε ≤ ε∗ (g,Ω), we have |∇uε (x) | ≤ c(g,Ω)

ε for x ∈ Ω.

Proof Suppose to the contrary that there are a sequence εj → 0, and a sequence uj = uεj ,
solutions of (2.1) such that u3

j > 0 in Ω and that

Kj = εj sup
x∈Ω

|∇uj (x) | → ∞.

Then the eigenvalue argument in Proposition 6.2 implies, for any ψ ∈ C∞
c (Ω),

∫
Ω

|∇ψ|2 +
ψ2

ε2j
≥
∫

Ω

(
|∇uj |2 +

(
u3
j

)2
ε2j

)
ψ2. (6.6)

Choose xj ∈ Ω such that Kj = εj |∇uj (xj) |, define Ωj = Kj

εj
(Ω − xj), vj (x) = uj

(
xj + εj

Kj
x
)

for x ∈ Ωj . Then

−�vj =

(
|∇vj |2 +

(
v3
j

)2
K2
j

)
vj +

v3
j

K2
j

e3 on Ωj , |∇vj (x) | ≤ 1, |∇vj (0) | = 1, v3
j ≥ 0.
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If Ωj → R
2, then |vj |C1,α(Br) ≤ c (α, r) for 0 < α < 1, r > 0. Hence after passing to a

subsequence we may assume vj → v in C∞ (
R

2
)
. Then v ∈ C∞ (

R
2, S2

)
and

−�v = |∇v|2v on R
2, |∇v (x) | ≤ 1, |∇v (0) | = 1, v3 (x) ≥ 0.

We deduce from Lemma 3.2 that v (x) =
(
ei(c0+c1x

1+c2x
2), 0

)
, c0, c1, c2 being real constants

such that c21 + c22 = 1. On the other hand, by choosing a suitable ψ in (6.6) we have, for any
R > 0, ∫

BR

|∇vj |2 =
∫
B εj

Kj
R

(xj)

|∇uj |2 ≤ c+ c
R2

K2
j

.

Letting j → ∞, we get
∫
BR

|∇v|2 ≤ c, hence we obtain a contradiction. If Ωj → H, H is a half
plane, after rotation we may assume H = {x\x ∈ R

2, x2 > −a} for some a ≥ 0, then vj → v

in C∞ (
H
)
. v ∈ C∞ (

H,S2
)

and v|∂H is a constant in S1. Since v is a smooth harmonic map
from H to S2, v3 ≥ 0, |∇v (x) | ≤ 1 and |∇v (0) | = 1, and due to (6.6) we get, for any ball
BR (x0) such that B2R (x0) ⊂ H, we have the estimate∫

BR(x0)

|∇v|2 ≤ c. (6.7)

Here c is an absolute constant. The Hopf function ϕ = |∂1v|2 − |∂2v|2 − 2i (∂1v · ∂2v) is
holomorphic and bounded, Im (ϕ) = 0 on ∂H, hence ϕ ≡ const. But from (6.7) we know∫
BR(x0)

|ϕ| ≤ c for any B2r (x0) ⊂ H, which implies ϕ ≡ 0. Hence ∂2v ≡ 0 on ∂H. v ≡ const
by the uniqueness of the Cauchy problem. This contradicts the fact |∇v (0) | = 1.

Proposition 6.4 Suppose u ∈ C∞ (
R

2, S2
)

satisfies (5.7) on the whole plane, u3 ≥ 0,
lim inf |x|→∞ |∇u(x)| = 0,

∫
R2

(
u3
)2
dx <∞. Then either u3 ≡ 0 or

|u3(x)| ≤ c(u)e−
|x|
16 , |∇u3(x)| ≤ c(u)e−

|x|
16 , |∇u(x)| ≤ c(u)

|x| ,
∫

R2

(
u3
)2
dx = πd2,

where d is the degree of u′
|u′| at ∞ with, u′ =

(
u1, u2

)
.

Proof If u3 is not identically zero, from Harnack’s inequality we know u3 > 0. Proposition
6.2 tells us |∇u (x) | ≤ c. This and the fact that

∫
R2

(
u3
)2
< ∞ imply u3 (x) → 0 as |x| → ∞.

Hence one has |∇u3 (x) | → 0 by the elliptic estimates.

Claim 6.4
∫

R2 |∇u3(x)|2dx <∞.

Proof of Claim 6.4 In fact, from the third component’s equation we get∫
Br

|∇u3|2 +
(
u3
)2

=
∫
Br

(
u3
)2 (|∇u|2 +

(
u3
)2)

+
∫
∂Br

u3 ∂u
3

∂ν
ds

≤ c

∫
R2

(
u3
)2

+ c

(
r

∫
∂Br

(
u3
)2
ds

) 1
2

.

Choosing a generic r, we get
∫

R2 |∇u3|2 ≤ c
∫

R2

(
u3
)2
<∞.

Consider the Hopf function ϕ =
(|∂1u|2 − |∂2u|2

)− 2i (∂1u · ∂2u). Then ∂ϕ
∂z =

∂(u3)2

∂z .
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Claim 6.5 | 1
πz ∗

∂(u3)2

∂z (x) | → 0 as |x| → ∞.

Proof of Claim 6.5 Fixing a positive number r0, then for |x| > r0, we have

∣∣∣∣ 1
πz

∗ ∂
(
u3
)2

∂z
(x)

∣∣∣∣ ≤ 1
πr0

∫
R2

∣∣∣∣∂
(
u3
)2

∂z

∣∣∣∣+ cr0 sup
y∈Br0

| (u3∇u3
)
(x− y)|

≤ c(u)
r0

+ cr0 sup
y∈Br0

| (u3∇u3
)
(x− y)|.

Letting |x| → ∞ then r0 → ∞, we get Claim 6.5.

Now ϕ − 1
πz ∗ ∂(u3)2

∂z is holomorphic and bounded, so it must be a constant. From the

condition lim inf |x|→∞ |∇u(x)| = 0 we know ϕ = 1
πz ∗

∂(u3)2

∂z and ϕ→ 0 as |x| → ∞.

Claim 6.6 |∇u(x)| → 0 as |x| → ∞.

Proof of Claim 6.6 Choose any xj → ∞, let vj(x) = u(xj + x). Then after passing to the
subsequence vj → v in C∞ (

R
2
)
, then v ∈ C∞ (

R
2, S2

)
and

−�v = |∇v|2v, v3(x) = 0, |∇v(x)| ≤ c.

Hence v(x) = (ei(c0+c1x
1+c2x

2), 0). From |∂1vj(x)|2 − |∂2vj(x)|2 → 0, ∂1vj(x) · ∂2vj(x) → 0,
we know |∂1v(x)|2 − |∂2v(x)|2 = 0, ∂1v(x) · ∂2v(x) = 0. Thus c21 − c22 = 0, c1c2 = 0, and
consequently c1 = c2 = 0. Hence v is a constant map and we get Claim 6.6.

Claim 6.7 |u3(x)| ≤ c(u)e−
|x|
16 .

Proof of Claim 6.7 Choose r0 > 0 such that |∇u(x)|2 +
(
u3(x)

)2 ≤ 3
4 for |x| ≥ r0. For any

|x| ≥ 2r0, we have

−�u3 +
(
1 − |∇u|2 − (

u3
)2)

u3 = 0, 1 − |∇u|2 − (
u3
)2 ≥ 1

4
on B |x|

2
(x) .

By comparison arguments, using the function in Lemma 4.5 we obtain |u3(x)| ≤ e−
|x|
16 . This

proves Claim 6.7.
We note elliptic estimates imply that |∇u3(x)| ≤ c(u)e−

|x|
16 .

Claim 6.8 |ϕ (x) | = | 1
πz ∗

∂(u3)2

∂z (x) | ≤ c(u)
|x|2 for |x| ≥ 1.

Proof of Claim 6.8 Let R = |x|. By the decay property of u3 and |∇u3| at ∞ and

1
πz

∗ ∂
(
u3
)2

∂z
(x) =

∫
BR

2

1
πy

∂
(
u3
)2

∂z
(x− y) dy +

∫
∂BR

2

1
πy

y

R

(
u3
)2

(x− y) ds

−
∫

R2\BR
2

(
u3
)2 (x− y)

π (y1 + iy2)2
dy,

one gets ∣∣∣∣ 1
πz

∗ ∂
(
u3
)2

∂z
(x)

∣∣∣∣ ≤ c(u)Re−
R
32 +

c(u)
R2

≤ c(u)
R2

.
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This proves Claim 6.8.

Claim 6.9 There exists a c(u) > 0 such that |∇u(x)| ≤ c(u)
|x| for |x| ≥ 1.

Proof of Claim 6.9 Choose xj → ∞, let rj = |xj |. Define vj(x) = u
(
xj + rj

2 x
)

for x ∈
B1. Then

−�vj =

(
|∇vj |2 +

r2j
4
(
v3
j

)2)
vj −

r2j
4
v3
j e3, |v3

j (x)| ≤ c(u)e−
rj
32 on B1.

Let Kj = sup|x|≤1 (1 − |x|) |∇vj (x) |. We claim that Kj remains bounded. Otherwise, one
would have a sequence of Kj → ∞, and a sequence of points yj ∈ B1 such that Kj =
(1 − |yj |) |∇vj (yj) |. Denote σj = 1 − |yj |, and define wj(x) = vj(yj + σj

Kj
x) for x ∈ BKj .

Then

−�wj =

(
|∇wj |2 +

σ2
j r

2
j

4K2
j

(
w3
j

)2)
wj −

σ2
j r

2
j

4K2
j

w3
j e3,

|∇wj(x)| ≤ 1

1 − |x|
Kj

, |∇wj(0)| = 1, |w3
j (x)| ≤ c(u)e−

rj
32 .

Thus |wj |C1,α(Br) ≤ c(α, r) for 0 < α < 1, r > 0. We may assume wj → w in C∞ (
R

2
)
; then

w ∈ C∞ (
R

2, S2
)

and

−�w = |∇w|2w, w3 = 0, |∇w(x)| ≤ 1, |∇w(0)| = 1.

Therefore w(x) = (ei(c0+c1x
1+c2x

2), 0), where c0, c1, c2 are real constants, c21 + c22 = 1. On the
other hand,

||∂1wj(x)|2 − |∂2wj(x)|2| =
σ2
j r

2
j

4K2
j

∣∣∣∣ (|∂1uj |2 − |∂2uj |2
)(

xj +
rj
2

(
yj +

σj
Kj

x

))∣∣∣∣
≤ c(u)

σ2
j

K2
j

→ 0,

|∂1wj(x) · ∂2wj(x)| =
σ2
j r

2
j

4K2
j

∣∣∣∣ (∂1uj · ∂2uj)
(
xj +

rj
2

(
yj +

σj
Kj

x

)) ∣∣∣∣ ≤ c(u)
σ2
j

K2
j

→ 0.

Hence |∂1w(x)|2 = |∂2w(x)|2, ∂1w(x) · ∂2w(x) = 0. The latter implies c21 − c22 = 0, c1c2 = 0,
which contradicts c21 + c22 = 1, and Claim 6.9 is proved by going back from vj to u.

The quantization of
∫

R2

(
u3
)2
dx follows from Proposition 6.1.
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[7] F. H. Lin, Static and moving vortices in Ginzburg-Landau theories, Nonlinear Partial Differential Equations

in Geometry and Physics (Knoxville, TN, 1995), Basel: Birkhäuser, 1997, 71–111.
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