Loading...
Search
Toggle navigation
JCM
Home
About Journal
Information for Authors
Editorial Board
Subscription
Editorial Office
Table of Content
15 September 2021, Volume 39 Issue 5
Previous Issue
Next Issue
NUMERICAL ANALYSIS OF CRANKNICOLSON SCHEME FOR THE ALLENCAHN EQUATION
Qianqian Chu, Guanghui Jin, Jihong Shen, Yuanfeng Jin
2021, 39(5): 655665. DOI:
10.4208/jcm.2002m20190213
Asbtract
(
92
)
PDF
References

Related Articles

Metrics
We consider numerical methods to solve the AllenCahn equation using the secondorder CrankNicolson scheme in time and the secondorder central difference approach in space. The existence of the finite difference solution is proved with the help of Browder fixed point theorem. The difference scheme is showed to be unconditionally convergent in
L
_{∞}
norm by constructing an auxiliary Lipschitz continuous function. Based on this result, it is demonstrated that the difference scheme preserves the maximum principle without any restrictions on spatial step size and temporal step size. The numerical experiments also verify the reliability of the method.
A CELLCENTERED ALE METHOD WITH HLLC2D RIEMANN SOLVER IN 2D CYLINDRICAL GEOMETRY
Jian Ren, Zhijun Shen, Wei Yan, Guangwei Yuan
2021, 39(5): 666692. DOI:
10.4208/jcm.2005m20190173
Asbtract
(
45
)
PDF
References

Related Articles

Metrics
This paper presents a secondorder direct arbitrary Lagrangian Eulerian (ALE) method for compressible flow in twodimensional cylindrical geometry. This algorithm has halfface fluxes and a nodal velocity solver, which can ensure the compatibility between edge fluxes and the nodal flow intrinsically. In twodimensional cylindrical geometry, the control volume scheme and the areaweighted scheme are used respectively, which are distinguished by the discretizations for the source term in the momentum equation. The twodimensional secondorder extensions of these schemes are constructed by employing the monotone upwind scheme of conservation law (MUSCL) on unstructured meshes. Numerical results are provided to assess the robustness and accuracy of these new schemes.
A GREEDY ALGORITHM FOR SPARSE PRECISION MATRIX APPROXIMATION
Didi Lv, Xiaoqun Zhang
2021, 39(5): 693707. DOI:
10.4208/jcm.2005m20190151
Asbtract
(
35
)
PDF
References

Related Articles

Metrics
Precision matrix estimation is an important problem in statistical data analysis. This paper proposes a sparse precision matrix estimation approach, based on CLIME estimator and an efficient algorithm GISS
^{ρ}
that was originally proposed for
l
_{1}
sparse signal recovery in compressed sensing. The asymptotic convergence rate for sparse precision matrix estimation is analyzed with respect to the new stopping criteria of the proposed GISS
^{ρ}
algorithm. Finally, numerical comparison of GISS
^{ρ}
with other sparse recovery algorithms, such as ADMM and HTP in three settings of precision matrix estimation is provided and the numerical results show the advantages of the proposed algorithm.
A FAST COMPACT DIFFERENCE METHOD FOR TWODIMENSIONAL NONLINEAR SPACEFRACTIONAL COMPLEX GINZBURGLANDAU EQUATIONS
Lu Zhang, Qifeng Zhang, Haiwei Sun
2021, 39(5): 708732. DOI:
10.4208/jcm.2005m20200029
Asbtract
(
71
)
PDF
References

Related Articles

Metrics
This paper focuses on a fast and highorder finite difference method for twodimensional spacefractional complex GinzburgLandau equations. We firstly establish a threelevel finite difference scheme for the time variable followed by the linearized technique of the nonlinear term. Then the fourthorder compact finite difference method is employed to discretize the spatial variables. Hence the accuracy of the discretization is $\mathcal{O}$(
τ
^{2}
+ $h_1^4$ + $h_2^4$) in
L
_{2}
norm, where
τ
is the temporal stepsize, both
h
_{1}
and
h
_{2}
denote spatial mesh sizes in
x
 and
y
 directions, respectively. The rigorous theoretical analysis, including the uniqueness, the almost unconditional stability, and the convergence, is studied via the energy argument. Practically, the discretized system holds the block Toeplitz structure. Therefore, the coefficient Toeplitzlike matrix only requires $\mathcal{O}$(
M
_{1}
M
_{2}
) memory storage, and the matrixvector multiplication can be carried out in $\mathcal{O}$(
M
_{1}
M
_{2}
(log
M
_{1}
+ log
M
_{2}
)) computational complexity by the fast Fourier transformation, where
M
_{1}
and
M
_{2}
denote the numbers of the spatial grids in two different directions. In order to solve the resulting Toeplitzlike system quickly, an efficient preconditioner with the Krylov subspace method is proposed to speed up the iteration rate. Numerical results are given to demonstrate the well performance of the proposed method.
MODIFIED ALTERNATING POSITIVE SEMIDEFINITE SPLITTING PRECONDITIONER FOR TIMEHARMONIC EDDY CURRENT MODELS
Yifen Ke, Changfeng Ma
2021, 39(5): 733754. DOI:
10.4208/jcm.2006m20200037
Asbtract
(
43
)
PDF
References

Related Articles

Metrics
In this paper, we consider a modified alternating positive semidefinite splitting preconditioner for solving the saddle point problems arising from the finite element discretization of the hybrid formulation of the timeharmonic eddy current model. The eigenvalue distribution and an upper bound of the degree of the minimal polynomial of the preconditioned matrix are studied for both simple and general topology. Numerical results demonstrate the effectiveness of the proposed preconditioner when it is used to accelerate the convergence rate of Krylov subspace methods such as GMRES.
A POSTERIORI ERROR ESTIMATES FOR A MODIFIED WEAK GALERKIN FINITE ELEMENT APPROXIMATION OF SECOND ORDER ELLIPTIC PROBLEMS WITH DG NORM
Yuping Zeng, Feng Wang, Zhifeng Weng, Hanzhang Hu
2021, 39(5): 755776. DOI:
10.4208/jcm.2006m20190010
Asbtract
(
34
)
PDF
References

Related Articles

Metrics
In this paper, we derive a residual based a posteriori error estimator for a modified weak Galerkin formulation of second order elliptic problems. We prove that the error estimator used for interior penalty discontinuous Galerkin methods still gives both upper and lower bounds for the modified weak Galerkin method, though they have essentially different bilinear forms. More precisely, we prove its reliability and efficiency for the actual error measured in the standard DG norm. We further provide an improved a priori error estimate under minimal regularity assumptions on the exact solution. Numerical results are presented to verify the theoretical analysis.
ANALYSIS ON A NUMERICAL SCHEME WITH SECONDORDER TIME ACCURACY FOR NONLINEAR DIFFUSION EQUATIONS
Xia Cui, Guangwei Yuan, Fei Zhao
2021, 39(5): 777800. DOI:
10.4208/jcm.2007m20200058
Asbtract
(
60
)
PDF
References

Related Articles

Metrics
A nonlinear fully implicit finite difference scheme with secondorder time evolution for nonlinear diffusion problem is studied. The scheme is constructed with twolayer coupled discretization (TLCD) at each time step. It does not stir numerical oscillation, while permits large time step length, and produces more accurate numerical solutions than the other two wellknown secondorder time evolution nonlinear schemes, the CrankNicolson (CN) scheme and the backward difference formula secondorder (BDF2) scheme. By developing a new reasoning technique, we overcome the difficulties caused by the coupled nonlinear discrete diffusion operators at different time layers, and prove rigorously the TLCD scheme is uniquely solvable, unconditionally stable, and has secondorder convergence in both space and time. Numerical tests verify the theoretical results, and illustrate its superiority over the CN and BDF2 schemes.
Current Issue
Earlier Issues
Advanced Search
Most Read Articles
Most Downloaded Articles
Visit Hong Kong Site