]*>","")" /> 服从幂律的拟牛顿流动稳定化有限元方法

• 论文 • 上一篇    下一篇

服从幂律的拟牛顿流动稳定化有限元方法

周磊,周天孝   

  1. 中国航空计算技术研究所,中国航空计算技术研究所
  • 出版日期:1997-04-14 发布日期:1997-04-14

周磊,周天孝. 服从幂律的拟牛顿流动稳定化有限元方法[J]. 计算数学, 1997, 19(4): 409-420.

STABILIZED FINITE ELEMENT METHODS OF A QUASI-NEWTONIAN FLOW OBEYING POWER LAW

  1. Zhou Lei;Zhou Tian-xiao (Aeronautic Computing Technology Institute, CAE, Xi'an)
  • Online:1997-04-14 Published:1997-04-14
In this paper, a Galerkin /least squares-type finite element method is proposed for a quasi-Newtonian flow, where the viscosity obeys the power law, The method is consistent and stable for P1/P1(PO) and Q1/Q1(QO) combination of discrete velocity and pressure spaces (without requiring the "inf-sup" stability condition).The existence, uniqueness and convergence of the discrete solution is proved.
()

[1]Leopoldo P. Franca, R. Stenberg, Error analysis of some Galerkin Least Squares methods for the elasticity equations, SIAM J. Numer. Anal, 28(1991), 1680-1697.
[2]V.Girault;P.A.Raviart,Finite Element Method for Navier-Stokes Equations,Theory and Algorithms,Springer;Berlin;1986.
[3]John W. Barret, W.B. Liu; Finite element error anaysis of a quasi-Newtonian flow obeying the Carreau or power law; Numer, Math, 64(1993); 433-453.
[4]John W.Barrett,W.B.Liu,Finite element approximation of the p-Laplacian,Math.Comp,61(1993),523-537.
[5]J.W.Barret, W.B.Liu, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow, Numer, Math, 68(1994), 437-456.
[6]熊华鑫,冯民富,胡兵,Ladyzhenskaya模型的低阶三角形有限元方法.四川大学学报30(1993),314-323.
[7]B.-N. Jiang,C. Chang; Least-squares finite element method for Stokes problem, Comput.Methods Appl. Mech. Engrp, 78(1990), 297-311.
[8]P.B. Bochev, M.D.Gunzburger; Analysis of Least squares finite element methods for the Stokes equations, Math. Comp。 63(1994), 479-506.
[9]J.Baranger; K.Najib; D.Sandri, Numerical analysis of a three-fields model for a qllasi-Newtonian flow, Compu Meth. Appli. Mech. Engrg, 109(1993), 281-292.
[10]A.F.D. Loula,J.N.C. Guerreiro; Finite element analysis of nonlinear creep flows, Comput.Methods in Appl. Mech. Engrg, 79(1990), 87-109.
[11]F. Brezzi;J. Douglas, Jr, Stabilized mixed methods for the Stokes problem,Numer,Math,53(1988); 225-235.
[12]陈文芳,非牛顿流体力学科学出版社1984.
[13]Tianxiao Zhou and Minfu Feng, A Least square Petrv-Galerkin finite element method for the ststionary N-s equations, Math. Comp, 60(1993); 531-543.
[14]周天孝,基于鞍点问题对偶组合的有限元法及其理论,待发表.
[15]张海桥,吴继周,非牛顿流体偏心环空螺旋流的解析解,应用数学与力学, 15(1994), 627-638.
No related articles found!
阅读次数
全文


摘要