]*>","")" />
周磊,周天孝
周磊,周天孝. 服从幂律的拟牛顿流动稳定化有限元方法[J]. 计算数学, 1997, 19(4): 409-420.
分享此文:
[1]Leopoldo P. Franca, R. Stenberg, Error analysis of some Galerkin Least Squares methods for the elasticity equations, SIAM J. Numer. Anal, 28(1991), 1680-1697. [2]V.Girault;P.A.Raviart,Finite Element Method for Navier-Stokes Equations,Theory and Algorithms,Springer;Berlin;1986. [3]John W. Barret, W.B. Liu; Finite element error anaysis of a quasi-Newtonian flow obeying the Carreau or power law; Numer, Math, 64(1993); 433-453. [4]John W.Barrett,W.B.Liu,Finite element approximation of the p-Laplacian,Math.Comp,61(1993),523-537. [5]J.W.Barret, W.B.Liu, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow, Numer, Math, 68(1994), 437-456. [6]熊华鑫,冯民富,胡兵,Ladyzhenskaya模型的低阶三角形有限元方法.四川大学学报30(1993),314-323. [7]B.-N. Jiang,C. Chang; Least-squares finite element method for Stokes problem, Comput.Methods Appl. Mech. Engrp, 78(1990), 297-311. [8]P.B. Bochev, M.D.Gunzburger; Analysis of Least squares finite element methods for the Stokes equations, Math. Comp。 63(1994), 479-506. [9]J.Baranger; K.Najib; D.Sandri, Numerical analysis of a three-fields model for a qllasi-Newtonian flow, Compu Meth. Appli. Mech. Engrg, 109(1993), 281-292. [10]A.F.D. Loula,J.N.C. Guerreiro; Finite element analysis of nonlinear creep flows, Comput.Methods in Appl. Mech. Engrg, 79(1990), 87-109. [11]F. Brezzi;J. Douglas, Jr, Stabilized mixed methods for the Stokes problem,Numer,Math,53(1988); 225-235. [12]陈文芳,非牛顿流体力学科学出版社1984. [13]Tianxiao Zhou and Minfu Feng, A Least square Petrv-Galerkin finite element method for the ststionary N-s equations, Math. Comp, 60(1993); 531-543. [14]周天孝,基于鞍点问题对偶组合的有限元法及其理论,待发表. [15]张海桥,吴继周,非牛顿流体偏心环空螺旋流的解析解,应用数学与力学, 15(1994), 627-638. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||