]*>","")" /> 解单障碍问题的非重叠区域分解法

• 论文 • 上一篇    下一篇

解单障碍问题的非重叠区域分解法

曾金平,王烈衡   

  1. 湖南大学应用数学系,中国科学院科学与工程计算研究所
  • 出版日期:1997-04-14 发布日期:1997-04-14

曾金平,王烈衡. 解单障碍问题的非重叠区域分解法[J]. 计算数学, 1997, 19(4): 421-430.

NONOVERLAPPING DOMAIN DECOMPOSITION METHOD FOR SOLVING OBSTACLE VARIATIONAL INEQUALITIES

  1. Zeng Jin-ping (Dept. Appl. Math., Hunan Univeristy, Changsha)Wang Lie-heng (Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing)
  • Online:1997-04-14 Published:1997-04-14
Numerical solution of obstacle variational inequalities associated with second order elliptic opertators is considered. A kind of nonoverlapping domain decom position method, which can be developed by substructuring methods used in en gineering and scientific computing, is proposed. Convergence and convergent rate analysis of the method are given. Moreover, the method is illustrated by numerical experiments.
()

[1]L. Badea On the Schwarz alternating method with more than two subdomains for nonlinear monotone problems, SIAM J. Numer,Anal, 28(1991), 179-204.
[2]J. H. Bramble,J. E. Pasciak, A. H. Schatz; The construction of predictioners for elliptic problems by substructuring,I,Math. Comp, 47(1986), 103-134.
[3]J. H. BraMle,J. E. Pasciak, A. H. Schatz; The construction of predictioners for elliptic problems by substructuring;II,Math. Comp, 49(1987), 1-16.
[4]Y. Kuznetsov, P. Neittaanmdki, P. Tarvalnen, Overlapping domain decomposition methods for the obstacle problem, In: Domain Decomposition Methods in Science and Engineering (eds. Y. Kuznetsov,J. Peraux, A. Quarteroni and O. Widlund), AMS, 1994, 271-277.
[5]Y. Kuznetsov, P. Neittaanmski, P. Tarvainen, Schwarz methods for obstacle problem with convection-diffusion operator, in:Domain Decomposition Methods in Scientific and En- gineering Computing(eds. D. E. Keyes and J. C. Xu) AMS, 1995, 251-156.
[6]P. L. Lions, On the Schwarz alternating method I, Proceedings of Domain Decomposition Method(eds. R. Glowinski, G. H. Golub; G. A. Meurant,J. Periaux) SIAM, 1988, l-40.
[7]吕涛,石济民,林振宝,区域分解法,科学出版社,北京,1992.
[8]F. Scarpini, The alternative Scharz method applied to some biharmonic variational in-equalities; Calcolo, 27(1990), 57-72.
[9]P. Tarvainen, Two-level Schwarz method for unilateral variational inequalities, Tech. Re-port,University of Jyvaskyla, Laboratory of Scientific Computing,1996.
[10]R.Varga,Matrix Iterative Analysis,Prentice-Hall,New Jersey, 1962.
[11]许学军,沈树民,障碍问题的区域分解法,高等学校计算数学学报, 16(1994), 186-194.
[12]曾金平,具单调收敛的区域分解法,高等学校计算数学学报, 2(1996), 175-182.
[13]J. P. Zeng, S. Z. Zhou; On monotone and geometric convergence of Schwarz methodsfor two-side obstacle problems, to appear.
[14]S. Z. Zhou, An additive Schwarz algorithm for、variational inequality,Proceedings of DDMS,1996.
[15]S. Z. Zhou; L. X. Ding; A parallel Schwarz algorithm for、rlatlonal inequalities, Chinese Soience Bulletin, 13(1996), 1061-1064.
No related articles found!
阅读次数
全文


摘要