• 论文 • 上一篇    下一篇

一类H矩阵线性互补问题的预处理二步模基矩阵分裂迭代方法

郑华, 罗静   

  1. 韶关学院, 数学与统计学院, 韶关 512005
  • 收稿日期:2016-05-12 出版日期:2018-03-15 发布日期:2018-02-03
  • 通讯作者: 罗静,guluojing@163.com.
  • 基金资助:

    国家自然科学基金(11601340),广东省高性能计算学会开放基金项目(2017060108),广东省数据科学工程技术研究中心开放基金项目(2016KF11),韶关市科技计划项目(韶科[2016]44/15),韶关学院科研项目(S201501021).

郑华, 罗静. 一类H矩阵线性互补问题的预处理二步模基矩阵分裂迭代方法[J]. 计算数学, 2018, 40(1): 24-32.

Zheng Hua, Luo Jing. A PRECONDITIONED TWO-STEPS MODULUS-BASEDMATRIX SPLITTING ITERATION METHOD FORSOLVING LINEAR COMPLEMENTARITYPROBLEMS OF H-MATRICES[J]. Mathematica Numerica Sinica, 2018, 40(1): 24-32.

A PRECONDITIONED TWO-STEPS MODULUS-BASEDMATRIX SPLITTING ITERATION METHOD FORSOLVING LINEAR COMPLEMENTARITYPROBLEMS OF H-MATRICES

Zheng Hua, Luo Jing   

  1. School of Mathematics and Statistics, Shaoguan University, Shaoguan 512005, China
  • Received:2016-05-12 Online:2018-03-15 Published:2018-02-03
本文我们利用预处理技术推广了求解线性互补问题的二步模基矩阵分裂迭代法,并针对H-矩阵类给出了新方法的收敛性分析,得到的理论结果推广了已有的一些方法.
In this paper, we extend the two-steps modulus-based matrix splitting iteration method for solving linear complementarity problems by preconditioned technique. The convergence analysis of the proposed method is given when the system matrix is an H-matrix. Our results always improve some existing ones.

MR(2010)主题分类: 

()
[1] Cottle R W, Pang J S and Stone R E. The Linear Complementarity Problem[M]. SIAM Publisher, Philadelphia, 2009.

[2] Ferris M C and Pang J S. Engineering and economic applications of complementarity problems[J]. SIAM Reviews, 1997, 39:669-713.

[3] Bai Z Z. Modulus-based matrix splitting iteration methods for linear complementarity problems[J]. Numer. Linear Algebra Appl., 2010, 17:917-933.

[4] Bai Z Z and Zhang L L. Modulus-based synchronous multisplitting iteration methods for linear complementarity problems[J]. Numer. Linear Algebra Appl., 2013, 20:425-439.

[5] Bai Z Z and Zhang L L. Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems[J]. Numer. Algorithms, 2013, 62:59-77.

[6] Dong J L and Jiang M Q. A modified modulus method for symmetric positive-definite linear complementarity problems[J]. Numer. Linear Algebra Appl., 2009, 16:129-143.

[7] Hadjidimos A and Tzoumas M. Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem[J]. Linear Algebra Appl., 2009, 431:197-210.

[8] van Bokhoven W M G. Piecewise-linear Modelling and Analysis[M]. Proefschrift, Eindhoven, 1981.

[9] Li W. A general modulus-based matrix splitting method for linear complementarity problems of H-matrices[J]. Appl. Math. Lett., 2013, 26:1159-1164.

[10] Zhang L L and Ren Z R. Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems[J]. Appl. Math. Lett., 2013, 26:638-642.

[11] Zhang L L. Two-step modulus based matrix splitting iteration for linear complementarity problems[J]. Numer. Algorithms, 2011, 57:83-99.

[12] Zhang L L. Two-stage multisplitting iteration methods using modulus-based matrix splitting as inner iteration for linear complementarity problems. Journal of Optimization Theory and Applications[J]. 2014, 160:189-203.

[13] Zheng N, Yin J F. Accelerated modulus-based matrix splitting iteration methods for linear complementarity problems[J]. Numer. Algorithms, 2013, 64:245-262.

[14] Liu S M, Zheng H, Li W. A general accelerated modulus-based matrix splitting iteration method for solving linear complementarity problems[J]. CALCOLO, 2016, 53:189-199.

[15] Zheng H, Li W, Vong S. A relaxation modulus-based matrix splitting iteration method for solving linear complementarity problems[J]. Numer. Algorithms, 2017, 74:137-152.

[16] Li W and Zheng H. A preconditioned modulus-based iteration method for solving linear complementarity problems of H-matrices[J]. Linear and Multilinear Algebra, 2016, 64:1390-1403.

[17] Berman A and Plemmons R J. Nonnegative Matrices in the Mathematical Sciences[M]. SIAM Publisher, Philadelphia, 1994.

[18] Bai Z Z. On the convergence of the multisplitting methods for the linear complementarity problem[J]. SIAM J. Matrix Anal. Appl., 1999, 21:67-78.

[19] Frommer A and Mayer G. Convergence of relaxed parallel multisplitting methods[J]. Linear Algebra Appl., 1989, 119:141-152.

[20] Hu J G, Estimates of||B-1 A|| and their applications[J]. Mathematica Numerica Sinica, 1982, 4:272-282.
[1] 孙家昶. 数学物理方程离散特征值问题的几何网格因式分解算法[J]. 计算数学, 2022, 44(4): 433-465.
[2] 廖丽丹, 张国凤. 三类有效预处理子的关系及其优化[J]. 计算数学, 2022, 44(4): 545-560.
[3] 刘瑶宁. 几乎各向同性的高维空间分数阶扩散方程的分块快速正则Hermite分裂预处理方法[J]. 计算数学, 2022, 44(2): 187-205.
[4] 缪树鑫. 关于“求解加权线性最小二乘问题的一类预处理GAOR方法”一文的注记[J]. 计算数学, 2022, 44(1): 89-96.
[5] 胡雅伶, 彭拯, 章旭, 曾玉华. 一种求解非线性互补问题的多步自适应Levenberg-Marquardt算法[J]. 计算数学, 2021, 43(3): 322-336.
[6] 张丽丽, 任志茹. 改进的分块模方法求解对角占优线性互补问题[J]. 计算数学, 2021, 43(3): 401-412.
[7] 何颖, 刘皞. 一类Toeplitz线性代数方程组的预处理GMRES方法[J]. 计算数学, 2021, 43(2): 177-191.
[8] 丁戬, 殷俊锋. 求解一类非线性互补问题的松弛two-sweep模系矩阵分裂迭代法[J]. 计算数学, 2021, 43(1): 118-132.
[9] 吴敏华, 李郴良. 求解带Toeplitz矩阵的线性互补问题的一类预处理模系矩阵分裂迭代法[J]. 计算数学, 2020, 42(2): 223-236.
[10] 曹阳, 陈莹婷. 正则化HSS预处理鞍点矩阵的特征值估计[J]. 计算数学, 2020, 42(1): 51-62.
[11] 王丽, 罗玉花, 王广彬. 求解加权线性最小二乘问题的一类预处理GAOR方法[J]. 计算数学, 2020, 42(1): 63-79.
[12] 李枝枝, 柯艺芬, 储日升, 张怀. 二阶锥线性互补问题的广义模系矩阵分裂迭代算法[J]. 计算数学, 2019, 41(4): 395-405.
[13] 戴平凡, 李继成, 白建超. 解线性互补问题的预处理加速模Gauss-Seidel迭代方法[J]. 计算数学, 2019, 41(3): 308-319.
[14] 李郴良, 田兆鹤, 胡小媚. 一类弱非线性互补问题的广义模系矩阵多分裂多参数加速松弛迭代方法[J]. 计算数学, 2019, 41(1): 91-103.
[15] 刘忠祥, 王翠薇, 王增琦. 求解时谐涡流模型鞍点问题的分块交替分裂隐式迭代算法的改进[J]. 计算数学, 2018, 40(3): 271-286.
阅读次数
全文


摘要