洪庆国1, 刘春梅2, 许进超1
洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309.
Hong Qingguo, Liu Chunmei, Xu Jinchao. AN ABSTRACT STABILIZATION METHOD WITH APPLICATIONS TO NONLINEAR INCOMPRESSIBLE ELASTICITY[J]. Mathematica Numerica Sinica, 2020, 42(3): 298-309.
Hong Qingguo1, Liu Chunmei2, Xu Jinchao1
MR(2010)主题分类:
分享此文:
[1] Reddy B, Simo J. Stability and convergence of a class of enhanced strain methods[J]. SIAM J. Numer. Anal., 1995, 32(6):1705-1728.[2] Braess D, Carstensen C, Reddy B. Uniform convergence and a posteriori error estimators for the enhanced strain finite element method[J]. Numer. Math., 2004, 96(3):461-479.[3] Houston P, Schotzau D, Wihler T. An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity[J]. Comput. Methods Appl. Mech. Engrg., 2006, 195(25-28):3224-3246.[4] Hansbo P, Larson M. Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method[J]. Comput. Methods Appl. Mech. Engrg., 2002, 191(17-18):1895-1908.[5] Hong Q, Kraus J, Xu J, Zikatanov L. A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations[J]. Numer. Math., 2016, 132(1):23-49.[6] Wu S, Gong S, Xu J. Interior penalty mixed finite element methods of any order in any dimension for linear elasticity with strongly symmetric stress tensor[J]. Math. Models Methods in Appl. Sci., 2017, 27(14):2711-2743.[7] Gong S, Wu S, Xu J. New hybridized mixed methods for linear elasticity and optimal multilevel solvers[J]. Numer. Math., 2019, 141(2):569-604.[8] Wang F, Wu S, Xu J. A mixed discontinuous Galerkin method for linear elasticity with strongly imposed symmetry[J]. J. Sci. Comput., 2020, 83(1):1-17.[9] Hong Q, Hu J, Ma L, Xu J. An Extended Galerkin Analysis for Linear Elasticity with Strongly Symmetric Stress Tensor[J]. arXiv preprint arXiv:2002.11664, 2020.[10] Auricchio F, da Veiga L B, Lovadina C, Reali A. A stability study of some mixed finite elements for large deformation elasticity problems[J]. Comput. Methods Appl. Mech. Engrg., 2005, 194(9-11):1075-1092.[11] Wriggers P, Reese S. A note on enhanced strain methods for large deformations[J]. Comput. Methods Appl. Mech. Engrg., 1996, 135(3-4):201-209.[12] Lovadina C, Auricchio F. On the enhanced strain technique for elasticity problems[J]. Comput.& Structures, 2003, 81(8-11):777-787.[13] Pantuso D, Bathe K. On the stability of mixed finite elements in large strain analysis of incompressible solids[J]. Finite Elem. Anal. Des., 1997, 28(2):83-104.[14] Eyck A T, Celiker F, Lew A. Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity:Analytical estimates[J]. Comput. Methods Appl. Mech. Engrg., 2008, 197(33-40):2989-3000.[15] Eyck A T, Celiker F, Lew A. Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity:Motivation, formulation, and numerical examples[J]. Comput. Methods Appl. Mech. Engrg., 2008, 197(45-48):3605-3622.[16] A. Ten Eyck A, Lew A. An adaptive stabilization strategy for enhanced strain methods in nonlinear elasticity[J]. Internat. J. Numer. Methods Engrg., 2010, 81(11):1387-1416.[17] Auricchio F, da Veiga L B, Lovadina C, Reali A. The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity:mixed FEMs versus NURBS-based approximations[J]. Comput. Methods Appl. Mech. Engrg., 2010, 199(5-8):314-323.[18] Hughes T, Cottrell J, Bazilevs Y. Isogeometric analysis:CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Comput. Methods Appl. Mech. Engrg., 2005, 194(39-41):4135-4195.[19] Brezzi F, Fortin M, Marini L. Mixed Finite Element Methods with Continuous Stresses[J]. Math. Models Methods Appl. Sci., 1993, 3:275-287.[20] Xie X, Xu J, Xue G. Uniformly stable finite element methods for Darcy-Stokes-Brinkman models[J]. J. Comput. Math., 2008, 26(3):437-455.[21] Bonet J, Wood R. Nonlinear continuum mechanics for finite element analysis[M]. Cambridge University Press, New York, 1997.[22] Brezzi F, Fortin M. Mixed and hybrid finite element methods[M]. Springer-Verlag, New York, 1991.[23] Brezzi F. On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers[J]. RAIRO Anal. Numer., 1974, 8(2):129-151.[24] Arnold D, Brezzi F, Fortin M. A stable finite element for the Stokes equations[J]. Calcolo, 1984, 21(4):337-344.[25] Girault V, Raviart P. Finite element methods for Navier-Stokes equations:theory and algorithms[M]. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1986. |
[1] | 胡婧玮. 非线性玻尔兹曼方程的傅里叶谱方法[J]. 计算数学, 2022, 44(3): 289-304. |
[2] | 包学忠, 胡琳, 产蔼宁. 线性随机变时滞微分方程指数Euler方法的收敛性和稳定性[J]. 计算数学, 2022, 44(3): 339-353. |
[3] | 贾旻茜, 张宇欣, 游雄. Hamilton系统的对称辛广义加性Runge-Kutta方法[J]. 计算数学, 2022, 44(3): 379-395. |
[4] | 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33. |
[5] | 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505. |
[6] | 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321. |
[7] | 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2): 210-226. |
[8] | 尚在久, 宋丽娜. 关于辛算法稳定性的若干注记[J]. 计算数学, 2020, 42(4): 405-418. |
[9] | 张然. 弱有限元方法在线弹性问题中的应用[J]. 计算数学, 2020, 42(1): 1-17. |
[10] | 胡冬冬, 曹学年, 蒋慧灵. 带非线性源项的双侧空间分数阶扩散方程的隐式中点方法[J]. 计算数学, 2019, 41(3): 295-307. |
[11] | 盛秀兰, 赵润苗, 吴宏伟. 二维线性双曲型方程Neumann边值问题的紧交替方向隐格式[J]. 计算数学, 2019, 41(3): 266-294. |
[12] | 杨晋平, 李志强, 闫玉斌. 求解Riesz空间分数阶扩散方程的一种新的数值方法[J]. 计算数学, 2019, 41(2): 170-190. |
[13] | 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211. |
[14] | 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90. |
[15] | 丛玉豪, 胡洋, 王艳沛. 含分布时滞的时滞微分系统多步龙格-库塔方法的时滞相关稳定性[J]. 计算数学, 2019, 41(1): 104-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||