古振东1, 孙丽英2
古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456.
Gu Zhendong, Sun Liying. CHEBYSHEV SPECTRAL COLLOCATION METHOD FOR NONLINEAR VOLTERRA INTEGRAL EQUATIONS OF THE SECOND KIND[J]. Mathematica Numerica Sinica, 2020, 42(4): 445-456.
Gu Zhendong1, Sun Liying2
MR(2010)主题分类:
分享此文:
[1] Brauer F, Castillo-Chávez C. Mathematical models in population biology and epidemiology[M]. Springer New York.[2] Brunner H. Collocation methods for Volterra integral and related functional differential equations[M]. vol. 15, Cambridge University Press, 2004.[3] Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral methods (fundamental in single domains)[M]. Springer, 2006.[4] Elnagar G N, Kazemi M. Chebyshev spectral solution of nonlinear volterra-hammerstein integral equations[J]. Journal of Computational and Applied Mathematics, 1996, 76(1-2):147-158.[5] Gilding B H. A singular nonlinear volterra integral equation[J]. Journal of Integral Equations & Applications, 1993, 5(4):465-502.[6] Gouyandeh Z, Allahviranloo T, Armand A. Numerical solution of nonlinear volterra-fredholmhammerstein integral equations via tau-collocation method with convergence analysis[J]. Journal of Computational & Applied Mathematics, 2016, 308:435-446.[7] Ma Y, Huang J, Wang C. Numerical Solutions of Nonlinear Volterra-Fredholm-Hammerstein Integral Equations Using Sinc Nystrom Method[M]. Springer International Publishing, 2017.[8] Maleknejad K, Hashemizadeh E, Basirat B. Computational method based on bernstein operational matrices for nonlinear volterra-fredholm-hammerstein integral equations[J]. Communications in Nonlinear Science & Numerical Simulation, 2012, 17(1):52-61.[9] Marzban H R, Tabrizidooz H R, Razzaghi M. A composite collocation method for the nonlinear mixed volterra-fredholm-hammerstein integral equations[J]. Communications in Nonlinear Science & Numerical Simulation, 2011, 16(3):1186-1194.[10] Parand K, Rad J A. Numerical solution of nonlinear volterra-fredholm-hammerstein integral equations via collocation method based on radial basis functions[J]. Applied Mathematics & Computation, 2012, 218(9):5292-5309.[11] Unterreiter A. Volterra integral equation models for semiconductor devices[J]. Mathematical Methods in the Applied Sciences, 1996, 19(6):425-450. |
[1] | 李步扬. 曲率流的参数化有限元逼近[J]. 计算数学, 2022, 44(2): 145-162. |
[2] | 杨学敏, 牛晶, 姚春华. 椭圆型界面问题的破裂再生核方法[J]. 计算数学, 2022, 44(2): 217-232. |
[3] | 许志强. 相位恢复:理论、模型与算法[J]. 计算数学, 2022, 44(1): 1-18. |
[4] | 张法勇, 安晓丽. 带五次项的非线性Schrödinger方程的守恒差分格式[J]. 计算数学, 2022, 44(1): 63-70. |
[5] | 刘嘉诚, 陈先进, 段雅丽, 李昭祥. 改进的PNC方法及其在非线性偏微分方程多解问题中的应用[J]. 计算数学, 2022, 44(1): 119-136. |
[6] | 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443. |
[7] | 唐耀宗, 杨庆之. 非线性特征值问题平移对称幂法的收敛率估计[J]. 计算数学, 2021, 43(4): 529-538. |
[8] | 马积瑞, 范金燕. 信赖域方法在Hölderian局部误差界下的收敛性质[J]. 计算数学, 2021, 43(4): 484-492. |
[9] | 胡雅伶, 彭拯, 章旭, 曾玉华. 一种求解非线性互补问题的多步自适应Levenberg-Marquardt算法[J]. 计算数学, 2021, 43(3): 322-336. |
[10] | 李旭, 李明翔. 连续Sylvester方程的广义正定和反Hermitian分裂迭代法及其超松弛加速[J]. 计算数学, 2021, 43(3): 354-366. |
[11] | 刘金魁, 孙悦, 赵永祥. 凸约束伪单调方程组的无导数投影算法[J]. 计算数学, 2021, 43(3): 388-400. |
[12] | 唐玲艳, 郭嘉, 宋松和. 求解带刚性源项标量双曲型守恒律方程的保有界WCNS格式[J]. 计算数学, 2021, 43(2): 241-252. |
[13] | 郑伟珊. 弱奇异时滞Volterra积分方程雅可比收敛分析[J]. 计算数学, 2021, 43(2): 253-260. |
[14] | 袁光伟. 非正交网格上满足极值原理的扩散格式[J]. 计算数学, 2021, 43(1): 1-16. |
[15] | 王然, 张怀, 康彤. 求解带有非线性边界条件的涡流方程的A-φ解耦有限元格式[J]. 计算数学, 2021, 43(1): 33-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||