马积瑞, 范金燕
马积瑞, 范金燕. 信赖域方法在Hölderian局部误差界下的收敛性质[J]. 计算数学, 2021, 43(4): 484-492.
Ma Jirui, Fan Jinyan. ON THE CONVERGENCE OF THE TRUST REGION METHOD UNDER THE HÖLDERIAN ERROR BOUND CONDITION[J]. Mathematica Numerica Sinica, 2021, 43(4): 484-492.
Ma Jirui, Fan Jinyan
MR(2010)主题分类:
分享此文:
[1] Ahookhosh M, Artacho F J A, Fleming R M T and Vuong Phan T. Local convergence of LevenbergMarquardt methods under Hölderian metric subregularity, arXiv:1703.07461. [2] Fan J Y. Convergence rate of the trust region method for nonlinear equations under local error bound condition[J]. Computational Optimization and Applications, 2006, 34:215-227. [3] Fan J Y. The modified Levenberg-Marquardt method for nonlinear equations with cubic convergence[J]. Mathematics of Computation, 2012, 81:447-466. [4] Fan J Y, Huang J C and Pan J Y. An adaptive multi-step Levenberg-Marquardt method[J]. Journal of Scientific Computing, 2019, 78:531-548. [5] Fan J Y and Yuan Y X. On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption[J]. Computing, 2005, 74:23-39. [6] 范金燕, 袁亚湘, 非线性方程组数值方法[M]. 科学出版社, 2018. [7] Kelley C T. Solving Nonlinear Equations with Newton's Method[J]. Fundamentals of Algorithms, SIAM, Philadelphia, 2003. [8] Levenberg K. A method for the solution of certain nonlinear problems in least squares[J]. Quart. Appl. Math., 1944, 2:164-166. [9] Marquardt D W. An algorithm for least-squares estimation of nonlinear inequalities[J]. SIAM J. Appl. Math., 1963, 11:431-441. [10] Moré J J. The Levenberg-Marquardt algorithm:implementation and theory. In:G. A. Watson, ed., Lecture Notes in Mathematics 630:Numerical Analysis, Springer-Verlag, Berlin, 1978, 105-116. [11] Powell M J D. Convergence properties of a class of minimization algorithms[J]. Nonlinear programming, 1975, 2:1-27. [12] Wang H Y and Fan J Y. Convergence rate of the Levenberg-Marquardt method under Hölderian local error bound[J]. Optimization Methods and Software, 2020, 35767-786. [13] Wang H Y and Fan J Y. Convergence properties of inexact Levenberg-Marquardt method under Hölderian local error bound[J]. Journal of Industrial and Management Optimization, 202117:2265-2275. [14] Yamashita N and Fukushima M. On the rate of convergence of the Levenberg-Marquardt method[J]. Computing, Supplement 2001, 15:237-249. [15] Yuan Y X. Trust region algorithms for nonlinear equations[J]. Information, 1998, 1:7-20. [16] Yuan Y X. Subspace methods for large scale nonlinear equations and nonlinear least squares[J]. Optimizaiton and Engineering, 2009, 10:207-218. [17] Yuan Y X. Recent advances in numerical methods for nonlinear equations and nonlinear least sqaures[J]. Numerical Algebra, Control and Optimization, 2011, 1:15-34. [18] Zhu X D and Lin G H. Improved convergence results for a modified Levenberg-Marquardt method for nonlinear equations and applications in MPCC[J]. Optimization Methods and Software, 2016, 31:791-804. |
[1] | 刘金魁, 孙悦, 赵永祥. 凸约束伪单调方程组的无导数投影算法[J]. 计算数学, 2021, 43(3): 388-400. |
[2] | 裕静静, 江平, 刘植. 两类五阶解非线性方程组的迭代算法[J]. 计算数学, 2017, 39(2): 151-166. |
[3] | 郭俊, 吴开腾, 张莉, 夏林林. 一种新的求非线性方程组的数值延拓法[J]. 计算数学, 2017, 39(1): 33-41. |
[4] | 张旭, 檀结庆, 艾列富. 一种求解非线性方程组的3p阶迭代方法[J]. 计算数学, 2017, 39(1): 14-22. |
[5] | 刘亚君, 刘新为. 无约束最优化的信赖域BB法[J]. 计算数学, 2016, 38(1): 96-112. |
[6] | 刘晴, 檀结庆, 张旭. 一种基于Chebyshev迭代解非线性方程组的方法[J]. 计算数学, 2015, 37(1): 14-20. |
[7] | 王洋, 伍渝江, 付军. 一类弱非线性方程组的Picard-MHSS迭代方法[J]. 计算数学, 2014, 36(3): 291-302. |
[8] | 张旭, 檀结庆. 三步五阶迭代方法解非线性方程组[J]. 计算数学, 2013, 35(3): 297-304. |
[9] | 杨爱利, 伍渝江, 李旭, 孟玲玲. 一类非线性方程组的Newton-PSS迭代法[J]. 计算数学, 2012, 34(4): 329-340. |
[10] | 陈传淼, 胡宏伶, 雷蕾, 曾星星. 非线性方程组的Newton流线法[J]. 计算数学, 2012, 34(3): 235-258. |
[11] | 刘景辉, 马昌凤, 陈争. 解无约束优化问题的一个新的带线搜索的信赖域算法[J]. 计算数学, 2012, 34(3): 275-284. |
[12] | 庞善民, 陈兰平. 一类带非单调线搜索的信赖域算法[J]. 计算数学, 2011, 33(1): 48-56. |
[13] | 杨柳, 陈艳萍. 求解非线性方程组的一种新的全局收敛的Levenberg-Marquardt算法[J]. 计算数学, 2008, 30(4): 388-396. |
[14] | 袁功林,鲁习文,韦增欣,. 具有全局收敛性的求解对称非线性方程组的一个修改的信赖域方法[J]. 计算数学, 2007, 29(3): 225-234. |
[15] | 王周宏. 一个无约束有限内存信赖域方法及其实现[J]. 计算数学, 2005, 27(4): 395-404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||