• 论文 • 上一篇    下一篇

信赖域方法在Hölderian局部误差界下的收敛性质

马积瑞, 范金燕   

  1. 上海交通大学数学科学学院, 教育部科学工程计算重点实验室, 上海 200240
  • 收稿日期:2020-05-11 出版日期:2021-11-14 发布日期:2021-11-12
  • 通讯作者: 范金燕,jyfan@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金(11971309)资助.

马积瑞, 范金燕. 信赖域方法在Hölderian局部误差界下的收敛性质[J]. 计算数学, 2021, 43(4): 484-492.

Ma Jirui, Fan Jinyan. ON THE CONVERGENCE OF THE TRUST REGION METHOD UNDER THE HÖLDERIAN ERROR BOUND CONDITION[J]. Mathematica Numerica Sinica, 2021, 43(4): 484-492.

ON THE CONVERGENCE OF THE TRUST REGION METHOD UNDER THE HÖLDERIAN ERROR BOUND CONDITION

Ma Jirui, Fan Jinyan   

  1. School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; School of Mathematical Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2020-05-11 Online:2021-11-14 Published:2021-11-12
信赖域方法是求解非线性方程组的一种重要方法.本文研究了求解非线性方程组的信赖域半径趋于零的信赖域算法在Jacobi矩阵Hölderian连续条件下的全局收敛性质,以及其在Hölderian局部误差界和Jacobi矩阵Hölderian连续条件下的收敛速度.
The trust region method is an improtant method for solving nonlinear equations. In this paper, we study the global convergence of the trust region method with trust region converging to zero under the Hölderian continuousness of the Jacobian. The convergence rate of the method is also given under the Hölderian error bound condition.

MR(2010)主题分类: 

()
[1] Ahookhosh M, Artacho F J A, Fleming R M T and Vuong Phan T. Local convergence of LevenbergMarquardt methods under Hölderian metric subregularity, arXiv:1703.07461.
[2] Fan J Y. Convergence rate of the trust region method for nonlinear equations under local error bound condition[J]. Computational Optimization and Applications, 2006, 34:215-227.
[3] Fan J Y. The modified Levenberg-Marquardt method for nonlinear equations with cubic convergence[J]. Mathematics of Computation, 2012, 81:447-466.
[4] Fan J Y, Huang J C and Pan J Y. An adaptive multi-step Levenberg-Marquardt method[J]. Journal of Scientific Computing, 2019, 78:531-548.
[5] Fan J Y and Yuan Y X. On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption[J]. Computing, 2005, 74:23-39.
[6] 范金燕, 袁亚湘, 非线性方程组数值方法[M]. 科学出版社, 2018.
[7] Kelley C T. Solving Nonlinear Equations with Newton's Method[J]. Fundamentals of Algorithms, SIAM, Philadelphia, 2003.
[8] Levenberg K. A method for the solution of certain nonlinear problems in least squares[J]. Quart. Appl. Math., 1944, 2:164-166.
[9] Marquardt D W. An algorithm for least-squares estimation of nonlinear inequalities[J]. SIAM J. Appl. Math., 1963, 11:431-441.
[10] Moré J J. The Levenberg-Marquardt algorithm:implementation and theory. In:G. A. Watson, ed., Lecture Notes in Mathematics 630:Numerical Analysis, Springer-Verlag, Berlin, 1978, 105-116.
[11] Powell M J D. Convergence properties of a class of minimization algorithms[J]. Nonlinear programming, 1975, 2:1-27.
[12] Wang H Y and Fan J Y. Convergence rate of the Levenberg-Marquardt method under Hölderian local error bound[J]. Optimization Methods and Software, 2020, 35767-786.
[13] Wang H Y and Fan J Y. Convergence properties of inexact Levenberg-Marquardt method under Hölderian local error bound[J]. Journal of Industrial and Management Optimization, 202117:2265-2275.
[14] Yamashita N and Fukushima M. On the rate of convergence of the Levenberg-Marquardt method[J]. Computing, Supplement 2001, 15:237-249.
[15] Yuan Y X. Trust region algorithms for nonlinear equations[J]. Information, 1998, 1:7-20.
[16] Yuan Y X. Subspace methods for large scale nonlinear equations and nonlinear least squares[J]. Optimizaiton and Engineering, 2009, 10:207-218.
[17] Yuan Y X. Recent advances in numerical methods for nonlinear equations and nonlinear least sqaures[J]. Numerical Algebra, Control and Optimization, 2011, 1:15-34.
[18] Zhu X D and Lin G H. Improved convergence results for a modified Levenberg-Marquardt method for nonlinear equations and applications in MPCC[J]. Optimization Methods and Software, 2016, 31:791-804.
[1] 刘金魁, 孙悦, 赵永祥. 凸约束伪单调方程组的无导数投影算法[J]. 计算数学, 2021, 43(3): 388-400.
[2] 裕静静, 江平, 刘植. 两类五阶解非线性方程组的迭代算法[J]. 计算数学, 2017, 39(2): 151-166.
[3] 郭俊, 吴开腾, 张莉, 夏林林. 一种新的求非线性方程组的数值延拓法[J]. 计算数学, 2017, 39(1): 33-41.
[4] 张旭, 檀结庆, 艾列富. 一种求解非线性方程组的3p阶迭代方法[J]. 计算数学, 2017, 39(1): 14-22.
[5] 刘亚君, 刘新为. 无约束最优化的信赖域BB法[J]. 计算数学, 2016, 38(1): 96-112.
[6] 刘晴, 檀结庆, 张旭. 一种基于Chebyshev迭代解非线性方程组的方法[J]. 计算数学, 2015, 37(1): 14-20.
[7] 王洋, 伍渝江, 付军. 一类弱非线性方程组的Picard-MHSS迭代方法[J]. 计算数学, 2014, 36(3): 291-302.
[8] 张旭, 檀结庆. 三步五阶迭代方法解非线性方程组[J]. 计算数学, 2013, 35(3): 297-304.
[9] 杨爱利, 伍渝江, 李旭, 孟玲玲. 一类非线性方程组的Newton-PSS迭代法[J]. 计算数学, 2012, 34(4): 329-340.
[10] 陈传淼, 胡宏伶, 雷蕾, 曾星星. 非线性方程组的Newton流线法[J]. 计算数学, 2012, 34(3): 235-258.
[11] 刘景辉, 马昌凤, 陈争. 解无约束优化问题的一个新的带线搜索的信赖域算法[J]. 计算数学, 2012, 34(3): 275-284.
[12] 庞善民, 陈兰平. 一类带非单调线搜索的信赖域算法[J]. 计算数学, 2011, 33(1): 48-56.
[13] 杨柳, 陈艳萍. 求解非线性方程组的一种新的全局收敛的Levenberg-Marquardt算法[J]. 计算数学, 2008, 30(4): 388-396.
[14] 袁功林,鲁习文,韦增欣,. 具有全局收敛性的求解对称非线性方程组的一个修改的信赖域方法[J]. 计算数学, 2007, 29(3): 225-234.
[15] 王周宏. 一个无约束有限内存信赖域方法及其实现[J]. 计算数学, 2005, 27(4): 395-404.
阅读次数
全文


摘要