• 论文 • 上一篇    下一篇

二阶双曲方程的全离散格式下的混合元超收敛分析

杨怀君   

  1. 郑州航空工业管理学院, 数学学院, 郑州 450046
  • 收稿日期:2021-03-27 出版日期:2023-02-14 发布日期:2023-02-13
  • 基金资助:
    国家自然科学基金(12101568)和郑州航空工业管理学院博士启动基金(63020390)资助.

杨怀君. 二阶双曲方程的全离散格式下的混合元超收敛分析[J]. 计算数学, 2023, 45(1): 8-21.

Yang Huaijun. SUPERCONVERGENCE ANALYSIS OF MIXED FINITE ELEMENT METHOD FOR SECOND-ORDER HYPERBOLIC EQUATION WITH FULLY-DISCRETE SCHEME[J]. Mathematica Numerica Sinica, 2023, 45(1): 8-21.

SUPERCONVERGENCE ANALYSIS OF MIXED FINITE ELEMENT METHOD FOR SECOND-ORDER HYPERBOLIC EQUATION WITH FULLY-DISCRETE SCHEME

Yang Huaijun   

  1. School of Mathematics, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
  • Received:2021-03-27 Online:2023-02-14 Published:2023-02-13
  • Supported by:
    The project was supported by the National Key Research and Development Program of China (2019YFC1905301);National Natural Science Foundation of China (22078115,21776108,21690083,22008078).
通过在空间方向上使用双线性元和最低阶的 Nedeléc 元 (即Q11 + Q01 × Q10)以及在时间方向上使用二阶精度的数值逼近格式, 得到了在矩形网格上二阶双曲方程全离散混合元格式下的对原始变量的L(H1) 和流量的L((L2)2)的超逼近和超收敛的误差结果. 在分析过程中, 巧妙地使用了上述混合单元对在矩形网格上的特有的高精度积分恒等式和精确解的投影和插值之间的在H1范数意义下的超逼近的估计. 最后, 给出一些数值结果来验证理论分析的正确性.
Based on the bilinear element and the lowest order Nedeléc element (i.e. Q11+Q01×Q10) used in spatial direction and a second order accurate scheme applied in temporal direction, the superclose and superconvergence error estimates for original variable in L(H1) and for flux variables in L((L2)2) are obtained for second order hyperbolic equation on the rectangular mesh. The analysis relies on the integral identity of the element pair and the technique of combining the interpolation and projection operators as well as the superclose estimate in H1-norm between them. Finally, some numerical results are provided to confirm the theoretical analysis.

MR(2010)主题分类: 

()
[1] Larsson S, Thomée V. Partial differential equations with numerical methods[M]. Spring, Berlin, Heidelberg, (2003).
[2] Yan N N. Superconvergence analysis and a posteriori error estimation in finite element methods[M]. Science Press, Beijing, (2008).
[3] Ding H, Zhang Y. A new fourth-order compact finite difference scheme for the two-dimensional second-order hyperbolic equation[J]. J. Comput. Appl. Math., 2009, 230(2):626-632.
[4] He D. An unconditionally stable spatial sixth-order CCD-ADI method for the two-dimensional linear telegraph equation[J]. Numer. Algor., 2016, 72:1103-1117.
[5] Liao H, Sun Z. A two-level compact ADI method for solving second-order wave equations[J]. Int. J. Comput. Math., 2013, 90(1):1471-1488.
[6] Wang S, Kreiss G. Convergence of summation-by-parts finite difference methods for the wave equation[J]. J. Sci. Comput., 2017, 71:219-245.
[7] George K, Twizell E H. Stable second-order finite-difference methods for linear initial-boundaryvalue problems[J]. Appl. Math. Lett., 2016, 19:146-154.
[8] He X M, Lü T. A finite element splitting extrapolation for second orer hyperbolic equations[J]. SIAM J. Sci. Comput., 2009, 31(6):4244-4265.
[9] Basson M, Van Rensburg N F J. Galerkin finite element approximation of general linear second order hyperbolic equations[J]. Numer. Funct. Anal. Opt., 2013, 34(9):976-1000.
[10] Baker G A. Error estimates for finite element methods for second order hyperbolic equations[J]. SIAM J. Numer. Anal.,1976, 13(4):564-576.
[11] Dupont T. L2-estimate for Galerkin methods for second order hyperbolic equations[J]. SIAM J. Numer. Anal., 1973, 10:880-889.
[12] Bradji A, Fuhrmann J. Some new error estimates for finite element methods for second order hyperbolic equations using the Newmark method[J]. Math. Bohem., 2014, 139(2):125-136.
[13] Bales L A. Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions[J]. M2AN. Math. Model. Numer. Anal., 1993, 27(1):55-63.
[14] Pani A K, Sinha R K, Otta A K. An H1-Galerkin mixed method for second order hyperbolic equations[J]. Int. J. Numer. Anal. Model., 2004, 1(2):111-129.
[15] Shi D, Wang J. Unconditional superconvergence analysis for nonlinear hyperbolic equation with nonconforming finite element[J]. Appl. Math. Comput., 2017, 305:1-16.
[16] Cao W, Li D, Yang Y, Zhang Z. Superconvergence of discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations[J]. M2AN. Math. Model. Numer. Anal., 2017, 51(2):467-486.
[17] Cao W, Zhang Z, Zou Q. Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations[J]. SIAM J. Numer. Anal., 2014, 52(5):2555-2573.
[18] Grote M J, Schtzau D. Optimal error estimates for the fully discrete interior penalty DG method for the wave equation[J]. J. Sci. Comput., 2009, 40:257-272.
[19] Grote M J, Schneebeli A, Schotzau D. Discontinuous Galerkin finite element method for the wave equation[J]. SIAM J. Numer. Anal., 44(6):2408-2431.
[20] 陈绍春, 陈红如. 二阶椭圆问题新的混合元格式[J]. 计算数学, 2010, 32(2): 213-216.
[21] 石东洋, 李明浩. 二阶椭圆问题一种新格式的高精度分析[J]. 应用数学学报, 2014, 37(1):45-58.
[22] Shi D, Wang P, Zhao Y. Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation[J]. Appl. Math. Lett., 2014, 38:129-134.
[23] Adams R A, Fournier J J F. Sobolev Spaces[M]. Academic Press (2003).
[24] Thomee V. Galerkin finite element methods for parabolic problems[M]. Berlin:Springer-Verlag (1984).
[25] 石东洋, 王芬玲, 樊明智, 赵艳敏. sine-Gordon方程的最低阶各向异性混合元高精度分析[J]. 计算数学, 2015, 37(2):148-161.
[26] 林群, 林甲富. 有限元方法:精度与提高[M]. 北京:科学出版社, (2006).
[27] Zhao Y M, Chen P, Bu W P, Liu X T, Tang Y F. Two mixed finite element methods for timefractional diffusion equations[J]. J. Sci. Comput., 2017, 70(1):407-428.
[1] 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211.
[2] 王芬玲, 樊明智, 赵艳敏, 史争光, 石东洋. 多项时间分数阶扩散方程各向异性线性三角元的高精度分析[J]. 计算数学, 2018, 40(3): 299-312.
[3] 赵艳敏, 石东洋, 王芬玲. 非线性Schrödinger方程新混合元方法的高精度分析[J]. 计算数学, 2015, 37(2): 162-178.
[4] 石东洋, 王芬玲, 赵艳敏. 非线性sine-Gordon方程的各向异性线性元高精度分析新模式[J]. 计算数学, 2014, 36(3): 245-256.
阅读次数
全文


摘要