杨怀君
杨怀君. 二阶双曲方程的全离散格式下的混合元超收敛分析[J]. 计算数学, 2023, 45(1): 8-21.
Yang Huaijun. SUPERCONVERGENCE ANALYSIS OF MIXED FINITE ELEMENT METHOD FOR SECOND-ORDER HYPERBOLIC EQUATION WITH FULLY-DISCRETE SCHEME[J]. Mathematica Numerica Sinica, 2023, 45(1): 8-21.
Yang Huaijun
MR(2010)主题分类:
分享此文:
[1] Larsson S, Thomée V. Partial differential equations with numerical methods[M]. Spring, Berlin, Heidelberg, (2003). [2] Yan N N. Superconvergence analysis and a posteriori error estimation in finite element methods[M]. Science Press, Beijing, (2008). [3] Ding H, Zhang Y. A new fourth-order compact finite difference scheme for the two-dimensional second-order hyperbolic equation[J]. J. Comput. Appl. Math., 2009, 230(2):626-632. [4] He D. An unconditionally stable spatial sixth-order CCD-ADI method for the two-dimensional linear telegraph equation[J]. Numer. Algor., 2016, 72:1103-1117. [5] Liao H, Sun Z. A two-level compact ADI method for solving second-order wave equations[J]. Int. J. Comput. Math., 2013, 90(1):1471-1488. [6] Wang S, Kreiss G. Convergence of summation-by-parts finite difference methods for the wave equation[J]. J. Sci. Comput., 2017, 71:219-245. [7] George K, Twizell E H. Stable second-order finite-difference methods for linear initial-boundaryvalue problems[J]. Appl. Math. Lett., 2016, 19:146-154. [8] He X M, Lü T. A finite element splitting extrapolation for second orer hyperbolic equations[J]. SIAM J. Sci. Comput., 2009, 31(6):4244-4265. [9] Basson M, Van Rensburg N F J. Galerkin finite element approximation of general linear second order hyperbolic equations[J]. Numer. Funct. Anal. Opt., 2013, 34(9):976-1000. [10] Baker G A. Error estimates for finite element methods for second order hyperbolic equations[J]. SIAM J. Numer. Anal.,1976, 13(4):564-576. [11] Dupont T. L2-estimate for Galerkin methods for second order hyperbolic equations[J]. SIAM J. Numer. Anal., 1973, 10:880-889. [12] Bradji A, Fuhrmann J. Some new error estimates for finite element methods for second order hyperbolic equations using the Newmark method[J]. Math. Bohem., 2014, 139(2):125-136. [13] Bales L A. Semidiscrete and single step fully discrete finite element approximations for second order hyperbolic equations with nonsmooth solutions[J]. M2AN. Math. Model. Numer. Anal., 1993, 27(1):55-63. [14] Pani A K, Sinha R K, Otta A K. An H1-Galerkin mixed method for second order hyperbolic equations[J]. Int. J. Numer. Anal. Model., 2004, 1(2):111-129. [15] Shi D, Wang J. Unconditional superconvergence analysis for nonlinear hyperbolic equation with nonconforming finite element[J]. Appl. Math. Comput., 2017, 305:1-16. [16] Cao W, Li D, Yang Y, Zhang Z. Superconvergence of discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations[J]. M2AN. Math. Model. Numer. Anal., 2017, 51(2):467-486. [17] Cao W, Zhang Z, Zou Q. Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations[J]. SIAM J. Numer. Anal., 2014, 52(5):2555-2573. [18] Grote M J, Schtzau D. Optimal error estimates for the fully discrete interior penalty DG method for the wave equation[J]. J. Sci. Comput., 2009, 40:257-272. [19] Grote M J, Schneebeli A, Schotzau D. Discontinuous Galerkin finite element method for the wave equation[J]. SIAM J. Numer. Anal., 44(6):2408-2431. [20] 陈绍春, 陈红如. 二阶椭圆问题新的混合元格式[J]. 计算数学, 2010, 32(2): 213-216. [21] 石东洋, 李明浩. 二阶椭圆问题一种新格式的高精度分析[J]. 应用数学学报, 2014, 37(1):45-58. [22] Shi D, Wang P, Zhao Y. Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation[J]. Appl. Math. Lett., 2014, 38:129-134. [23] Adams R A, Fournier J J F. Sobolev Spaces[M]. Academic Press (2003). [24] Thomee V. Galerkin finite element methods for parabolic problems[M]. Berlin:Springer-Verlag (1984). [25] 石东洋, 王芬玲, 樊明智, 赵艳敏. sine-Gordon方程的最低阶各向异性混合元高精度分析[J]. 计算数学, 2015, 37(2):148-161. [26] 林群, 林甲富. 有限元方法:精度与提高[M]. 北京:科学出版社, (2006). [27] Zhao Y M, Chen P, Bu W P, Liu X T, Tang Y F. Two mixed finite element methods for timefractional diffusion equations[J]. J. Sci. Comput., 2017, 70(1):407-428. |
[1] | 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211. |
[2] | 王芬玲, 樊明智, 赵艳敏, 史争光, 石东洋. 多项时间分数阶扩散方程各向异性线性三角元的高精度分析[J]. 计算数学, 2018, 40(3): 299-312. |
[3] | 赵艳敏, 石东洋, 王芬玲. 非线性Schrödinger方程新混合元方法的高精度分析[J]. 计算数学, 2015, 37(2): 162-178. |
[4] | 石东洋, 王芬玲, 赵艳敏. 非线性sine-Gordon方程的各向异性线性元高精度分析新模式[J]. 计算数学, 2014, 36(3): 245-256. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||