• 论文 • 上一篇    下一篇

带非线性源项的Riesz回火分数阶扩散方程的预估校正方法

肖滴琴, 曹学年   

  1. 湘潭大学数学与计算科学学院, 湘潭 411105
  • 收稿日期:2021-04-14 出版日期:2023-02-14 发布日期:2023-02-13
  • 通讯作者: 曹学年,Email: cxn@xtu.edu.cn
  • 基金资助:
    国家自然科学基金(12071403)资助.

肖滴琴, 曹学年. 带非线性源项的Riesz回火分数阶扩散方程的预估校正方法[J]. 计算数学, 2023, 45(1): 22-38.

Xiao Diqin, Cao Xuenian. PREDICTOR-CORRECTOR APPROACH FOR RIESZ TEMPERED FRACTIONAL DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM[J]. Mathematica Numerica Sinica, 2023, 45(1): 22-38.

PREDICTOR-CORRECTOR APPROACH FOR RIESZ TEMPERED FRACTIONAL DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM

Xiao Diqin, Cao Xuenian   

  1. School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China
  • Received:2021-04-14 Online:2023-02-14 Published:2023-02-13
  • Supported by:
    The project was supported by the National Key Research and Development Program of China (2019YFC1905301);National Natural Science Foundation of China (22078115,21776108,21690083,22008078).
本文针对带非线性源项的 Riesz 回火分数阶扩散方程, 利用预估校正方法离散时间偏导数, 并用修正的二阶 Lubich 回火差分算子逼近 Riesz 空间回火的分数阶偏导数, 构造出一类新的数值格式. 给出了数值格式在一定条件下的稳定性与收敛性分析, 且该格式的时间与空间收敛阶均为二阶. 数值试验表明数值方法是有效的.
In this paper, a new numerical scheme is constructed for solving Riesz tempered fractional diffusion equation with a nonlinear source term in which the predictor-corrector approach is applied to discretize the time partial derivative and the modified second-order Lubich tempered difference operator is used to approximate the Riesz space tempered fractional partial derivative. The stability and convergence analysis of the numerical scheme are given under a certain condition, and there are both second order for the time and space convergence order of this numerical scheme. Numerical experiments demonstrate that the numerical method is effective.

MR(2010)主题分类: 

()
[1] Metzler R, Klafter J. The random walk's guide to anomalous diffusion:a fractional dynamics approach[J]. Physics reports, 2000, 339(1):1-77.
[2] 常福宣, 陈进, 黄薇. 反常扩散与分数阶对流-扩散方程[J]. 物理学报, 2005, 54(3):1113-1117.
[3] Cartea Á, del-Castillo-Negrete D. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions[J]. Physical Review E, 2007, 76(4):041105.
[4] Magdziarz M, Weron A, Weron K. Fractional Fokker-Planck dynamics:Stochastic representation and computer simulation[J]. Physical Review E, 2007, 75(1):016708.
[5] Mainardi F. Fractional calculus and waves in linear viscoelasticity:an introduction to mathematical models[M]. World Scientific, 2010.
[6] Piryatinska A, Saichev A I, Woyczynski W A. Models of anomalous diffusion:the subdiffusive case[J]. Physica A:Statistical Mechanics and its Applications, 2005, 349(3-4):375-420.
[7] Baeumer B, Kovács M, Meerschaert M M. Fractional reproduction-dispersal equations and heavy tail dispersal kernels[J]. Bulletin of mathematical biology, 2007, 69(7):2281-2297.
[8] Fedotov S, Iomin A. Migration and proliferation dichotomy in tumor-cell invasion[J]. Physical Review Letters, 2007, 98(11):118101.
[9] Jeon J H, Monne H M S, Javanainen M, Metzler R. Anomalous diffusion of phospholipids and cholesterols in a lipid bilayer and its origins[J]. Physical review letters, 2012, 109(18):188103.
[10] Baeumer B, Benson D A, Meerschaert M M, Wheatcraft S W. Subordinated advection-dispersion equation for contaminant transport[J]. Water Resources Research, 2001, 37(6):1543-1550.
[11] Cushman J H, Ginn T R. Fractional advection-dispersion equation:A classical mass balance with convolution-Fickian flux[J]. Water resources research, 2000, 36(12):3763-3766.
[12] Schumer R, Benson D A, Meerschaert M M, Wheatcraft S W. Eulerian derivation of the fractional advection-dispersion equation[J]. Journal of contaminant hydrology, 2001, 48(1-2):69-88.
[13] Jurlewicz A, Wylomańska A, Zebrowski P. Coupled continuous-time random walk approach to the Rachev-Rüschendorf model for financial data[J]. Physica A:Statistical Mechanics and its Applications, 2009, 388(4):407-418.
[14] Mainardi F, Raberto M, Gorenflo R,. Fractional calculus and continuous-time finance II:the waiting-time distribution[J]. Physica A:Statistical Mechanics and its Applications, 2000, 287(3-4):468-481.
[15] Scalas E. Five years of continuous-time random walks in econophysics[M]. The complex networks of economic interactions. Springer, Berlin, Heidelberg, 2006:3-16.
[16] Sabzikar F, Meerschaert M M, Chen J. Tempered fractional calculus[J]. Journal of Computational Physics, 2015, 293:14-28.
[17] Baeumer B, Meerschaert M M. Tempered stable Lévy motion and transient super-diffusion[J]. Journal of Computational and Applied Mathematics, 2010, 233(10):2438-2448.
[18] Li C, Deng W H. High order schemes for the tempered fractional diffusion equations[J]. Advances in computational mathematics, 2016, 42(3):543-572.
[19] Qu W, Liang Y. Stability and convergence of the Crank-Nicolson scheme for a class of variablecoefficient tempered fractional diffusion equations[J]. Advances in Difference Equations, 2017, 2017(1):108.
[20] Yu Y Y, Deng W H, Wu Y J, Wu J. Third order difference schemes (without using points outside of the domain) for one sided space tempered fractional partial differential equations[J]. Applied Numerical Mathematics, 2017, 112:126-145.
[21] Yu Y Y, Deng W H, Wu Y J. High-order quasi-compact difference schemes for fractional diffusion equations[J]. Communications in Mathematical Sciences, 2017, 15(5):1183-1209.
[22] Çelik C, Duman M. Finite element method for a symmetric tempered fractional diffusion equation[J]. Applied Numerical Mathematics, 2017, 120:270-286.
[23] Zhang Y X, Li Q, Ding H F. High-order numerical approximation formulas for Riemann-Liouville (Riesz) tempered fractional derivatives:construction and application (I)[J]. Applied Mathematics and Computation, 2018, 329:432-443.
[24] Hu D D, Cao X N. The implicit midpoint method for Riesz tempered fractional diffusion equation with a nonlinear source term[J]. Advances in Difference Equations, 2019, 2019(1):66.
[25] Chakraborty A, Kumar B V R. Finite element method for drifted space fractional tempered diffusion equation[J]. Journal of Applied Mathematics and Computing, 2019, 61(1):117-135.
[26] Qiu Z S, Cao X N. Second-order numerical methods for the tempered fractional diffusion equations[J]. Advances in Difference Equations, 2019, 2019(1):485.
[27] 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的三阶数值格式[J]. 数值计算与计算机应用, 2020, 41(3):201-215.
[28] 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2):210-226.
[29] 关文绘, 曹学年. Riesz回火分数阶平流-扩散方程的隐式中点方法[J]. 数值计算与计算机应用, 2020, 41(1):42-57.
[30] Gorenflo R, Mainardi F, Moretti D, Paradisi P. Time fractional diffusion:a discrete random walk approach[J]. Nonlinear Dynamics, 2002, 29(1):129-143.
[31] Meerschaert M M, Zhang Y, Baeumer B. Tempered anomalous diffusion in heterogeneous systems[J]. Geophysical Research Letters, 2008, 35(17):1-5.
[32] Deng W H, Zhang Z J. Numerical schemes of the time tempered fractional Feynman-Kac equation[J]. Computers and Mathematics with Applications, 2017, 73(6):1063-1076.
[33] Ding H F, Li C P. A high-order algorithm for time-Caputo-tempered partial differential equation with Riesz derivatives in two spatial dimensions[J]. Journal of Scientific Computing, 2019, 80(1):81-109.
[34] Guan W H, Cao X N. A Numerical Algorithm for the Caputo Tempered Fractional AdvectionDiffusion Equation[J]. Communications on Applied Mathematics and Computation, 2020:1-19.
[35] Zhang Y. Moments for tempered fractional advection-diffusion equations[J]. Journal of Statistical Physics, 2010, 139(5):915-939.
[36] Hanert E, Piret C. A Chebyshev pseudospectral method to solve the space-time tempered fractional diffusion equation[J]. SIAM Journal on Scientific Computing, 2014, 36(4):A1797-A1812.
[37] Sun X R, Zhao F Q, Chen S P. Numerical algorithms for the time-space tempered fractional Fokker-Planck equation[J]. Advances in Difference Equations, 2017, 2017(1):259.
[38] Dehghan M, Abbaszadeh M, Deng W. Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation[J]. Applied Mathematics Letters, 2017, 73:120-127.
[39] Chen M H, Deng W H. A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation[J]. Applied Mathematics Letters, 2017, 68:87-93.
[40] Ding H F. A high-order numerical algorithm for two-dimensional time-space tempered fractional diffusion-wave equation[J]. Applied Numerical Mathematics, 2019, 135:30-46.
[1] 王琳, 许珊珊, 王文强. 非线性随机分数阶延迟积分微分方程Euler-Maruyama方法的强收敛性[J]. 计算数学, 2023, 45(1): 57-73.
[2] 唐跃龙, 华玉春. 半线性抛物最优控制问题全离散插值系数有限元方法的收敛性分析[J]. 计算数学, 2023, 45(1): 130-140.
[3] 邓定文, 赵紫琳. 求解二维Fisher-KPP方程的一类保正保界差分格式及其Richardson外推法[J]. 计算数学, 2022, 44(4): 561-584.
[4] 胡婧玮. 非线性玻尔兹曼方程的傅里叶谱方法[J]. 计算数学, 2022, 44(3): 289-304.
[5] 郭洁, 万中. 求解大规模极大极小问题的光滑化三项共轭梯度算法[J]. 计算数学, 2022, 44(3): 324-338.
[6] 包学忠, 胡琳, 产蔼宁. 线性随机变时滞微分方程指数Euler方法的收敛性和稳定性[J]. 计算数学, 2022, 44(3): 339-353.
[7] 霍振阳, 张静娜, 黄健飞. 多项Caputo分数阶随机微分方程的Euler-Maruyama方法[J]. 计算数学, 2022, 44(3): 354-367.
[8] 贾旻茜, 张宇欣, 游雄. Hamilton系统的对称辛广义加性Runge-Kutta方法[J]. 计算数学, 2022, 44(3): 379-395.
[9] 李步扬. 曲率流的参数化有限元逼近[J]. 计算数学, 2022, 44(2): 145-162.
[10] 杨学敏, 牛晶, 姚春华. 椭圆型界面问题的破裂再生核方法[J]. 计算数学, 2022, 44(2): 217-232.
[11] 马玉敏, 蔡邢菊. 求解带线性约束的凸优化的一类自适应不定线性化增广拉格朗日方法[J]. 计算数学, 2022, 44(2): 272-288.
[12] 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33.
[13] 邵新慧, 亢重博. 基于分数阶扩散方程的离散线性代数方程组迭代方法研究[J]. 计算数学, 2022, 44(1): 107-118.
[14] 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443.
[15] 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505.
阅读次数
全文


摘要