王琳, 许珊珊, 王文强
王琳, 许珊珊, 王文强. 非线性随机分数阶延迟积分微分方程Euler-Maruyama方法的强收敛性[J]. 计算数学, 2023, 45(1): 57-73.
Wang Lin, Xu Shanshan, Wang Wenqiang. STRONG CONVERGENCE OF THE ELUER-MARUYAMA METHOD FOR STOCHASTIC FRACTIONAL DELAY INTEGRO-DIFFERENTIAL EQUATIONS[J]. Mathematica Numerica Sinica, 2023, 45(1): 57-73.
Wang Lin, Xu Shanshan, Wang Wenqiang
MR(2010)主题分类:
分享此文:
[1] Hutt A, Bestehorn M, Wennekers T. Pattern formation in intracortical neuronal fields[J]. Network:Comp. Neural., 2003, 14(2):351-368. [2] Pinto C M A. Novel results for asymmetrically coupled fractional neurons[J]. Acta. Polytech. Hung., 2017, 14(1):177-189. [3] Tarasov V E. Fractional integro-differential equations for electromagnetic waves in dielectric media[J]. Theor. Math. Phys., 2009, 158(3):355-359. [4]杨水平,刘红良. 关于一类分数阶延迟积分微分方程的解的存在唯一性(英文)[J]. 湘潭大学自然科学学报, 2014, 36(03):7-11. [5] Gou H, Li B. Study on Sobolev type Hilfer fractional integro-differential equations with delay[J]. J. Fix. Point. Theory. A., 2018, 20(1):1-26. [6] Mohamed E M H, Raslan K R, Ali K K, et al. On general form of fractional delay integrodifferential equations[J]. Arab. J. Basic. Appl. Scie., 2020, 27(1):313-323. [7] Shahmorad S, Ostadzad M H, Baleanu D. A Tau-like numerical method for solving fractional delay integro-differential equations[J]. Appl. Numer. Math., 2020, 151:322-336. [8] Badr A A, El-Hoety H S. Monte-Carlo Galerkin approximation of fractional stochastic integrodifferential equation[J]. Math. Probl. Eng., 2012. [9] Elborai M M, Abdou M A, Youssef M I. On the existence, uniqueness, and stability behavior of a random solution to a non-local perturbed stochastic fractional integro-differential equation[J]. Life. Sci. J., 2013, 10(4):3368-3376. [10] Asgari M. Block pulse approximation of fractional stochastic integro-differential equation[J]. Commun. Numer. Anal., 2014, 1-7. [11] Mohammadi F. Efficient Galerkin solution of stochastic fractional differential equations using second kind Chebyshev wavelets[J]. Bol. Soc. Parana. Mat., 2015, 35(1):195-215. [12] Kamrani M. Convergence of Galerkin method for the solution of stochastic fractional integro differential equations[J]. Optik., 2016, 127(20):10049-10057. [13] Taheri Z, Javadi S, Babolian E. Numerical solution of stochastic fractional integro-differential equation by the spectral collocation method[J]. J. Comput. Appl. Math., 2017, 321:336-347. [14] Mirzaee F, Samadyar N. On the numerical solution of fractional stochastic integro-differential equations via meshless discrete collocation method based on radial basis functions[J]. Eng. Anal. Bound. Elem., 2019, 100:246-255. [15] Mao X. Stochastic differential equations and applications[M]. UK:Horwood Publishing Limited, 2007. [16] Ye H, Gao J, Ding Y. A generalized Gronwall inequality and its application to a fractional differential equation[J]. J. Math. Anal. Appl., 2007, 328(2):1075-1081. [17] Kamrani M. Numerical solution of stochastic fractional differential equations[J]. Numer. Algor., 2015, 68(1):81-93. [18] Mirzaee F, Samadyar N. Application of orthonormal Bernstein polynomials to construct a efficient scheme for solving fractional stochastic integro-differential equation[J]. Optik. Int. J. Light. Electron. Opt., 2017, 132:262-273. [19] Dai X, Bu W, Xiao A. Well-posedness and EM approximations for non-Lipschitz stochastic fractional integro-differential equations[J]. J. Comput. Appl. Math., 2019, 356:377-390. [20] Dai X, Xiao A, Bu W. Stochastic fractional integro-differential equations with weakly singular kernels:Well-posedness and Euler-Maruyama approximation[J]. Discrete Continuous Dynamical Systems-B, 2021. [21] Mao X. Stochastic differential equations and applications[M]. UK:Horwood Publishing Limited, 2007. [22] 彭威,朱梦姣,王文强. 一类中立型随机延迟积分微分方程分裂步θ方法的均方指数稳定性[J]. 数值计算与计算机应用, 2019, 40(04):310-326. [23] Zhang W, Liang H, Gao J. Theoretical and numerical analysis of the Euler-Maruyama method for generalized stochastic Volterra integro-differential equations[J]. J. Comput. Appl. Math., 2020, 365:112364. [24] Ye H, Gao J, Ding Y. A generalized Gronwall inequality and its application to a fractional differential equation[J]. J. Math. Anal. Appl., 2007, 328(2):1075-1081. [25] 朱梦姣,王文强. 非线性随机分数阶微分方程Euler方法的弱收敛性[J]. 计算数学, 2021, 43(01):87-109. [26] Yuan H. Convergence and stability of exponential integrators for semi-linear stochastic variable delay integro-differential equations[J]. Int. J. Comput. Math., 2020:1-30. [27] Son D T, Huong P T, E.Kloeden P, et al. Asymptotic separation between solutions of Caputo fractional stochastic differential equations[J]. Stoch. Anal. Appl., 2018, 36(4). |
[1] | 霍振阳, 张静娜, 黄健飞. 多项Caputo分数阶随机微分方程的Euler-Maruyama方法[J]. 计算数学, 2022, 44(3): 354-367. |
[2] | 朱梦姣, 王文强. 非线性随机分数阶微分方程Euler方法的弱收敛性[J]. 计算数学, 2021, 43(1): 87-109. |
[3] | 岳超. 高阶分裂步(θ1,θ2,θ3)方法的强收敛性[J]. 计算数学, 2019, 41(2): 126-155. |
[4] | 张维, 王文强. 随机微分方程改进的分裂步单支θ方法的强收敛性[J]. 计算数学, 2019, 41(1): 12-36. |
[5] | 简金宝, 唐菲, 黎健玲, 唐春明. 无约束极大极小问题的广义梯度投影算法[J]. 计算数学, 2013, 35(4): 385-392. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||