• 论文 • 上一篇    下一篇

非线性随机分数阶延迟积分微分方程Euler-Maruyama方法的强收敛性

王琳, 许珊珊, 王文强   

  1. 湘潭大学科学工程计算与数值仿真湖南省重点实验室, 湘潭 411105
  • 收稿日期:2021-07-01 出版日期:2023-02-14 发布日期:2023-02-13
  • 通讯作者: 王文强, Email: wwq@xtu.edu.cn
  • 基金资助:
    国家自然科学基金(12071403)和湖南省教育厅重点项目(18A049)资助.

王琳, 许珊珊, 王文强. 非线性随机分数阶延迟积分微分方程Euler-Maruyama方法的强收敛性[J]. 计算数学, 2023, 45(1): 57-73.

Wang Lin, Xu Shanshan, Wang Wenqiang. STRONG CONVERGENCE OF THE ELUER-MARUYAMA METHOD FOR STOCHASTIC FRACTIONAL DELAY INTEGRO-DIFFERENTIAL EQUATIONS[J]. Mathematica Numerica Sinica, 2023, 45(1): 57-73.

STRONG CONVERGENCE OF THE ELUER-MARUYAMA METHOD FOR STOCHASTIC FRACTIONAL DELAY INTEGRO-DIFFERENTIAL EQUATIONS

Wang Lin, Xu Shanshan, Wang Wenqiang   

  1. Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan 411105, China
  • Received:2021-07-01 Online:2023-02-14 Published:2023-02-13
  • Supported by:
    The project was supported by the National Key Research and Development Program of China (2019YFC1905301);National Natural Science Foundation of China (22078115,21776108,21690083,22008078).
本文研究了一类新的模型问题: 非线性随机分数阶延迟积分微分方程. 当方程中的漂移项和扩散项满足全局 Lipschitz 条件和线性增长条件时, 基于压缩映射原理给出了该方程解存在唯一的充分条件. 由于理论求解的困难, 构造了一种数值方法(Euler-Maruyama 方法), 并证得强收敛阶为α-1/2,α∈ (2/1, 1]. 最后通过数值试验, 验证了这一理论结果.
This paper studies a new type of model problem: nonlinear stochastic fractional delay integro-differential equations. Under the assumptions that the drift and diffusion terms in the equation satisfy the global Lipschitz condition and linear growth condition, the existence and uniqueness of the solution is proved by using contraction mapping principle. Due to the difficulty of theoretical solution, a numerical method (Euler-Maruyama method) is constructed and the order of strong convergence is proved to be α-1/2, α∈(1/2, 1].Finally, the theoretical results are verified by numerical experiments.

MR(2010)主题分类: 

()
[1] Hutt A, Bestehorn M, Wennekers T. Pattern formation in intracortical neuronal fields[J]. Network:Comp. Neural., 2003, 14(2):351-368.
[2] Pinto C M A. Novel results for asymmetrically coupled fractional neurons[J]. Acta. Polytech. Hung., 2017, 14(1):177-189.
[3] Tarasov V E. Fractional integro-differential equations for electromagnetic waves in dielectric media[J]. Theor. Math. Phys., 2009, 158(3):355-359.
[4]杨水平,刘红良. 关于一类分数阶延迟积分微分方程的解的存在唯一性(英文)[J]. 湘潭大学自然科学学报, 2014, 36(03):7-11.
[5] Gou H, Li B. Study on Sobolev type Hilfer fractional integro-differential equations with delay[J]. J. Fix. Point. Theory. A., 2018, 20(1):1-26.
[6] Mohamed E M H, Raslan K R, Ali K K, et al. On general form of fractional delay integrodifferential equations[J]. Arab. J. Basic. Appl. Scie., 2020, 27(1):313-323.
[7] Shahmorad S, Ostadzad M H, Baleanu D. A Tau-like numerical method for solving fractional delay integro-differential equations[J]. Appl. Numer. Math., 2020, 151:322-336.
[8] Badr A A, El-Hoety H S. Monte-Carlo Galerkin approximation of fractional stochastic integrodifferential equation[J]. Math. Probl. Eng., 2012.
[9] Elborai M M, Abdou M A, Youssef M I. On the existence, uniqueness, and stability behavior of a random solution to a non-local perturbed stochastic fractional integro-differential equation[J]. Life. Sci. J., 2013, 10(4):3368-3376.
[10] Asgari M. Block pulse approximation of fractional stochastic integro-differential equation[J]. Commun. Numer. Anal., 2014, 1-7.
[11] Mohammadi F. Efficient Galerkin solution of stochastic fractional differential equations using second kind Chebyshev wavelets[J]. Bol. Soc. Parana. Mat., 2015, 35(1):195-215.
[12] Kamrani M. Convergence of Galerkin method for the solution of stochastic fractional integro differential equations[J]. Optik., 2016, 127(20):10049-10057.
[13] Taheri Z, Javadi S, Babolian E. Numerical solution of stochastic fractional integro-differential equation by the spectral collocation method[J]. J. Comput. Appl. Math., 2017, 321:336-347.
[14] Mirzaee F, Samadyar N. On the numerical solution of fractional stochastic integro-differential equations via meshless discrete collocation method based on radial basis functions[J]. Eng. Anal. Bound. Elem., 2019, 100:246-255.
[15] Mao X. Stochastic differential equations and applications[M]. UK:Horwood Publishing Limited, 2007.
[16] Ye H, Gao J, Ding Y. A generalized Gronwall inequality and its application to a fractional differential equation[J]. J. Math. Anal. Appl., 2007, 328(2):1075-1081.
[17] Kamrani M. Numerical solution of stochastic fractional differential equations[J]. Numer. Algor., 2015, 68(1):81-93.
[18] Mirzaee F, Samadyar N. Application of orthonormal Bernstein polynomials to construct a efficient scheme for solving fractional stochastic integro-differential equation[J]. Optik. Int. J. Light. Electron. Opt., 2017, 132:262-273.
[19] Dai X, Bu W, Xiao A. Well-posedness and EM approximations for non-Lipschitz stochastic fractional integro-differential equations[J]. J. Comput. Appl. Math., 2019, 356:377-390.
[20] Dai X, Xiao A, Bu W. Stochastic fractional integro-differential equations with weakly singular kernels:Well-posedness and Euler-Maruyama approximation[J]. Discrete Continuous Dynamical Systems-B, 2021.
[21] Mao X. Stochastic differential equations and applications[M]. UK:Horwood Publishing Limited, 2007.
[22] 彭威,朱梦姣,王文强. 一类中立型随机延迟积分微分方程分裂步θ方法的均方指数稳定性[J]. 数值计算与计算机应用, 2019, 40(04):310-326.
[23] Zhang W, Liang H, Gao J. Theoretical and numerical analysis of the Euler-Maruyama method for generalized stochastic Volterra integro-differential equations[J]. J. Comput. Appl. Math., 2020, 365:112364.
[24] Ye H, Gao J, Ding Y. A generalized Gronwall inequality and its application to a fractional differential equation[J]. J. Math. Anal. Appl., 2007, 328(2):1075-1081.
[25] 朱梦姣,王文强. 非线性随机分数阶微分方程Euler方法的弱收敛性[J]. 计算数学, 2021, 43(01):87-109.
[26] Yuan H. Convergence and stability of exponential integrators for semi-linear stochastic variable delay integro-differential equations[J]. Int. J. Comput. Math., 2020:1-30.
[27] Son D T, Huong P T, E.Kloeden P, et al. Asymptotic separation between solutions of Caputo fractional stochastic differential equations[J]. Stoch. Anal. Appl., 2018, 36(4).
[1] 霍振阳, 张静娜, 黄健飞. 多项Caputo分数阶随机微分方程的Euler-Maruyama方法[J]. 计算数学, 2022, 44(3): 354-367.
[2] 朱梦姣, 王文强. 非线性随机分数阶微分方程Euler方法的弱收敛性[J]. 计算数学, 2021, 43(1): 87-109.
[3] 岳超. 高阶分裂步(θ1,θ2,θ3)方法的强收敛性[J]. 计算数学, 2019, 41(2): 126-155.
[4] 张维, 王文强. 随机微分方程改进的分裂步单支θ方法的强收敛性[J]. 计算数学, 2019, 41(1): 12-36.
[5] 简金宝, 唐菲, 黎健玲, 唐春明. 无约束极大极小问题的广义梯度投影算法[J]. 计算数学, 2013, 35(4): 385-392.
阅读次数
全文


摘要