何杰1, 王皓2, 秦飞龙3
何杰, 王皓, 秦飞龙. 基于多体作用的原子/连续耦合方法的先验误差估计[J]. 计算数学, 2023, 45(1): 74-92.
He Jie, Wang Hao, Qin Feilong. A PROIOR ERROR ESTIMATES FOR ENERGY-BASED ATOMISTIC/CONTINUUM METHOD FOR MULTI-BODY INTERACTION SYSTEMS BASED ON FRENKEL-KONFOROVA MODEL[J]. Mathematica Numerica Sinica, 2023, 45(1): 74-92.
He Jie1, Wang Hao2, Qin Feilong3
MR(2010)主题分类:
分享此文:
[1] Ortiz M, Phillips R and Tamor E B. Quasicontiuum analysis of defects in solids[J]. philosophical mag, 1996, A 73:1529-1563. [2] Shimokawa T, Mortensen J J, Schiotz J and jacobsen K W. Matching conditions in the quasicontinuum method:Removal of the error introduced at the interface between the coarse-grained and fully atomistic region[J]. phys. rev., 2004, B69:214104. [3] W E, Lu J and Yang J Z, Accuracy of the quasicontinuum method[J]. Phys. Rev., 2006, B74:214115. [4] Dobson M and Luskin M. Analysis of a force-based quasicontinuum approximation[J]. M2AN Math. Model. Numer. Anal., 2008, 42:113-139. [5] Makridakis C, Ortner C and Süli E. Stress-based atomistic/continuum coupling:A new variant of the quasicontinuum approximation[J]. Int. J. Multiscale. Comput. Engrg., 2010, 27. [6] Shenoy V B, Miller R, Tamdor E B, Rodney D, Phillips R and Ortiz M. An adaptive finite element approach to atomic-scale-the quasicontinuum method[J]. J. Mech. Phys. Solids., 1999, 47:611-642. [7] Miller R E and Tadmor E B. The quasicontinuum method:Overview, applications and currents directions[J]. J. Computer-Aided Materials Design., 2009, 9:203-239. [8] Dobson M and Luskin M. An analysis of the effect of ghost force oscillation on the quasicontinuum error[J]. M2AN Math. Model. Numer. Anal., 2009, 47:2455-2475. [9] Ming P and Yang J. Analysis of a one-dimentsional nonlocal quasi-continuum method[J]. Multicale Model. Simulat., 2009, 7:1838-1875. [10] W E and Ming P. Analysis of the local quasicontinuum method[J]. in:Frontiers and Prospects of Contemporary Applied Mathematics. Ser. Contemp. Appl. Math., 2005, 6:18-32. [11] Dobson M, Luskin M and Ortner C. Accuracy of quasicontinuum approximations near instabilities[J]. J. Mech. Phys. Solid., 2010, 58:1741-1757. [12] Ortner C. A posteriori existence in numerical computations[J]. SIAM J. Numer. Anal., 2009, 47:2550-2577. [13] Makridakis C, Ortner C and Süli E. A priori error analysis of two force-based atomistic/continuum models of a periodic chain[J]. Numer. Math., DOI:10.1007/s00211-011-0380-5. [14] Ortner C and Süli E. Analysis of a quasicontinuum method in one dimension[J]. Mathematical Modeling and Numberical Analysis, 2008, 42:57-91 [15] Ortner C and Wang H. A priori error estimates for energy-based quasicontinuum approximations of a periodic chain[J]. Mathematical Models and Methods in Applied Science, 2011, 21:2491-2521. [16] 何杰, 王皓, 胡兵, 刘少辉. 基于能量多体作用的原子/连续耦合方法的后验误差估计[J]. 四川大学学报自然科学版, 2017, 54(5):895-904. [17] Dobson M, Luskin M. An optimal order error analysis of the one-dimensional quasicontinuum approximation[J]. SIAM J, Numer. Anal., 2009, 47:2455-2475. [18] Wang Hao, Liu Shaohui and Yang Feng. A Posteriori Error Control for Three Typical Force-Based Atomisitc-to-Continuum Couping Methods for an Atomistic Chain[J]. Numer. Math. Theor. Mech. Appl., DOI:10.4208/nmtma.OA-2017-0094. |
[1] | 肖滴琴, 曹学年. 带非线性源项的Riesz回火分数阶扩散方程的预估校正方法[J]. 计算数学, 2023, 45(1): 22-38. |
[2] | 喻高航, 周艺, 吕来水. 带动量项的高阶幂法解高阶马尔科夫链的极限概率分布向量[J]. 计算数学, 2022, 44(1): 71-88. |
[3] | 李军成, 刘成志, 郭啸. 导数振荡与应变能极小的平面分段三次参数Hermite插值[J]. 计算数学, 2022, 44(1): 97-106. |
[4] | 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505. |
[5] | 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2): 210-226. |
[6] | 唐玲艳, 郭嘉, 宋松和. 求解带刚性源项标量双曲型守恒律方程的保有界WCNS格式[J]. 计算数学, 2021, 43(2): 241-252. |
[7] | 张然. 弱有限元方法在线弹性问题中的应用[J]. 计算数学, 2020, 42(1): 1-17. |
[8] | 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90. |
[9] | 李军成, 刘成志. 带参数的C3连续拟Catmull-Rom样条函数[J]. 计算数学, 2018, 40(1): 96-106. |
[10] | 唐玲艳, 郭云瑞, 宋松和. 非结构网格上一类满足局部极值原理的三阶精度有限体积方法[J]. 计算数学, 2017, 39(3): 309-320. |
[11] | 李军成, 刘成志. 带两个形状参数的同次Bézier曲线[J]. 计算数学, 2017, 39(2): 115-128. |
[12] | 王涛, 刘铁钢. 求解对流扩散方程的一致四阶紧致格式[J]. 计算数学, 2016, 38(4): 391-404. |
[13] | 李军成, 刘成志. 形状可调的C2连续三次三角Hermite插值样条[J]. 计算数学, 2016, 38(2): 187-199. |
[14] | 刘亚君, 刘新为. 无约束最优化的信赖域BB法[J]. 计算数学, 2016, 38(1): 96-112. |
[15] | 李厚彪, 钟尔杰. 关于热传导方程半离散差分格式的一个注记[J]. 计算数学, 2015, 37(4): 401-414. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||