• 论文 • 上一篇    下一篇

基于多体作用的原子/连续耦合方法的先验误差估计

何杰1, 王皓2, 秦飞龙3   

  1. 1. 成都工业学院大数据与人工智能学院, 成都 611730;
    2. 四川大学数学学院, 成都 610065;
    3. 成都工业学院 大数据与人工智能学院, 成都 611730
  • 收稿日期:2021-07-01 出版日期:2023-02-14 发布日期:2023-02-13
  • 基金资助:
    国家自然科学基金项目(11971336)和融合5G-V2X通信的智慧交通云服务平台的研发与应用(2021YFG0170)资助.

何杰, 王皓, 秦飞龙. 基于多体作用的原子/连续耦合方法的先验误差估计[J]. 计算数学, 2023, 45(1): 74-92.

He Jie, Wang Hao, Qin Feilong. A PROIOR ERROR ESTIMATES FOR ENERGY-BASED ATOMISTIC/CONTINUUM METHOD FOR MULTI-BODY INTERACTION SYSTEMS BASED ON FRENKEL-KONFOROVA MODEL[J]. Mathematica Numerica Sinica, 2023, 45(1): 74-92.

A PROIOR ERROR ESTIMATES FOR ENERGY-BASED ATOMISTIC/CONTINUUM METHOD FOR MULTI-BODY INTERACTION SYSTEMS BASED ON FRENKEL-KONFOROVA MODEL

He Jie1, Wang Hao2, Qin Feilong3   

  1. 1. Chengdu, Technological University, Information and Computing Science, Chengdu 611730, China;
    2. SiChuan University, mathematics college, Chengdu 610065, China;
    3. Chengdu, Technological University, Information and Computing Science, Chengdu 611730, China
  • Received:2021-07-01 Online:2023-02-14 Published:2023-02-13
  • Supported by:
    The project was supported by the National Key Research and Development Program of China (2019YFC1905301);National Natural Science Foundation of China (22078115,21776108,21690083,22008078).
本文研究理想晶体发生位错时如何发生形变, 应用本地化拟连续方法(QCL)、基于能量的拟连续方法(Q CE)、 非本地化拟连续方法(QNL), 分析了多体作用下Frenkel-Kontorova模型在一维情形中先验误差分析, 推导了该误差估计与原子模型解的光滑性的关系, 并且由于考虑的是一维原子链, 该误差还具备超收敛性.本文将一致性误差分析分解为模型误差和粗粒化误差, 并推导出基于负范数的误差估计, 稳定性分析将均匀应变扩充为非线性应变.最后利用数值实验说明了本文的分析结果.
In this paper, we analyzed the deformation of ideal crystal when dislocation occurs. By using the localized quasi-continuous method (QCL), energy based quasi-continuous method (QCE) and nonlocal quasi-continuous method (QNL), we analyze the prior error of Frenkelkontorova model under multi-body interaction in one-dimensional case, and derive the relationship between the error estimate and the smoothness of the solution of atomic model, In this paper, the consistent error analysis is decomposed into model error and coarse-grained error, and the error estimation based on negative norm is derived. The stability analysis extends the uniform strain to nonlinear strain. Finally, numerical experiments are used to illustrate the analysis results.

MR(2010)主题分类: 

()
[1] Ortiz M, Phillips R and Tamor E B. Quasicontiuum analysis of defects in solids[J]. philosophical mag, 1996, A 73:1529-1563.
[2] Shimokawa T, Mortensen J J, Schiotz J and jacobsen K W. Matching conditions in the quasicontinuum method:Removal of the error introduced at the interface between the coarse-grained and fully atomistic region[J]. phys. rev., 2004, B69:214104.
[3] W E, Lu J and Yang J Z, Accuracy of the quasicontinuum method[J]. Phys. Rev., 2006, B74:214115.
[4] Dobson M and Luskin M. Analysis of a force-based quasicontinuum approximation[J]. M2AN Math. Model. Numer. Anal., 2008, 42:113-139.
[5] Makridakis C, Ortner C and Süli E. Stress-based atomistic/continuum coupling:A new variant of the quasicontinuum approximation[J]. Int. J. Multiscale. Comput. Engrg., 2010, 27.
[6] Shenoy V B, Miller R, Tamdor E B, Rodney D, Phillips R and Ortiz M. An adaptive finite element approach to atomic-scale-the quasicontinuum method[J]. J. Mech. Phys. Solids., 1999, 47:611-642.
[7] Miller R E and Tadmor E B. The quasicontinuum method:Overview, applications and currents directions[J]. J. Computer-Aided Materials Design., 2009, 9:203-239.
[8] Dobson M and Luskin M. An analysis of the effect of ghost force oscillation on the quasicontinuum error[J]. M2AN Math. Model. Numer. Anal., 2009, 47:2455-2475.
[9] Ming P and Yang J. Analysis of a one-dimentsional nonlocal quasi-continuum method[J]. Multicale Model. Simulat., 2009, 7:1838-1875.
[10] W E and Ming P. Analysis of the local quasicontinuum method[J]. in:Frontiers and Prospects of Contemporary Applied Mathematics. Ser. Contemp. Appl. Math., 2005, 6:18-32.
[11] Dobson M, Luskin M and Ortner C. Accuracy of quasicontinuum approximations near instabilities[J]. J. Mech. Phys. Solid., 2010, 58:1741-1757.
[12] Ortner C. A posteriori existence in numerical computations[J]. SIAM J. Numer. Anal., 2009, 47:2550-2577.
[13] Makridakis C, Ortner C and Süli E. A priori error analysis of two force-based atomistic/continuum models of a periodic chain[J]. Numer. Math., DOI:10.1007/s00211-011-0380-5.
[14] Ortner C and Süli E. Analysis of a quasicontinuum method in one dimension[J]. Mathematical Modeling and Numberical Analysis, 2008, 42:57-91
[15] Ortner C and Wang H. A priori error estimates for energy-based quasicontinuum approximations of a periodic chain[J]. Mathematical Models and Methods in Applied Science, 2011, 21:2491-2521.
[16] 何杰, 王皓, 胡兵, 刘少辉. 基于能量多体作用的原子/连续耦合方法的后验误差估计[J]. 四川大学学报自然科学版, 2017, 54(5):895-904.
[17] Dobson M, Luskin M. An optimal order error analysis of the one-dimensional quasicontinuum approximation[J]. SIAM J, Numer. Anal., 2009, 47:2455-2475.
[18] Wang Hao, Liu Shaohui and Yang Feng. A Posteriori Error Control for Three Typical Force-Based Atomisitc-to-Continuum Couping Methods for an Atomistic Chain[J]. Numer. Math. Theor. Mech. Appl., DOI:10.4208/nmtma.OA-2017-0094.
[1] 肖滴琴, 曹学年. 带非线性源项的Riesz回火分数阶扩散方程的预估校正方法[J]. 计算数学, 2023, 45(1): 22-38.
[2] 喻高航, 周艺, 吕来水. 带动量项的高阶幂法解高阶马尔科夫链的极限概率分布向量[J]. 计算数学, 2022, 44(1): 71-88.
[3] 李军成, 刘成志, 郭啸. 导数振荡与应变能极小的平面分段三次参数Hermite插值[J]. 计算数学, 2022, 44(1): 97-106.
[4] 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505.
[5] 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2): 210-226.
[6] 唐玲艳, 郭嘉, 宋松和. 求解带刚性源项标量双曲型守恒律方程的保有界WCNS格式[J]. 计算数学, 2021, 43(2): 241-252.
[7] 张然. 弱有限元方法在线弹性问题中的应用[J]. 计算数学, 2020, 42(1): 1-17.
[8] 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90.
[9] 李军成, 刘成志. 带参数的C3连续拟Catmull-Rom样条函数[J]. 计算数学, 2018, 40(1): 96-106.
[10] 唐玲艳, 郭云瑞, 宋松和. 非结构网格上一类满足局部极值原理的三阶精度有限体积方法[J]. 计算数学, 2017, 39(3): 309-320.
[11] 李军成, 刘成志. 带两个形状参数的同次Bézier曲线[J]. 计算数学, 2017, 39(2): 115-128.
[12] 王涛, 刘铁钢. 求解对流扩散方程的一致四阶紧致格式[J]. 计算数学, 2016, 38(4): 391-404.
[13] 李军成, 刘成志. 形状可调的C2连续三次三角Hermite插值样条[J]. 计算数学, 2016, 38(2): 187-199.
[14] 刘亚君, 刘新为. 无约束最优化的信赖域BB法[J]. 计算数学, 2016, 38(1): 96-112.
[15] 李厚彪, 钟尔杰. 关于热传导方程半离散差分格式的一个注记[J]. 计算数学, 2015, 37(4): 401-414.
阅读次数
全文


摘要