胡行华, 秦艳杰
胡行华, 秦艳杰. 基于GA-Chebyshev神经网络的分数阶Bagley-Torvik方程数值解法[J]. 计算数学, 2023, 45(1): 109-129.
Hu Xinghua, Qin Yanjie. NUMERICAL SOLUTION OF FRACTIONAL BAGLEY-TORVIK EQUATIONS BASED ON GA-CHEBYSHEV NEURAL NETWORK[J]. Mathematica Numerica Sinica, 2023, 45(1): 109-129.
Hu Xinghua, Qin Yanjie
MR(2010)主题分类:
分享此文:
[1] Luchko Y, Gorenflo R. An operational method for solving fractional differential equations with the Caputo derivatives[J]. Acta Mathematica Vietnamica, 1999, 24(2). [2] Podlubny I. Fractional Differential Equations[C]. Mathematics in Science and Engineering. 1999. [3] L, Gaul, P, et al. Damping description involving fractional operator[J]. Mechanical Systems and Signal Processing, 1991. [4] Ray S S, Bera R K. Analytical solution of the Bagley Torvik equation by Adomian decomposition method[J]. Applied Mathematics and Computation, 2005, 168(1):398-410. [5] Zahra W K, Elkholy S M. Cubic spline solution of fractional Bagley-Torvik equation. 2013. Tadjeran M. Finite difference approximations for two-sided space-fractional partial differential equations[J]. Applied Numerical Mathematics, 2006, 56(1):80-90. [6] Mohammadi F. Numerical solution of Bagley-Torvik equation using Chebyshev wavelet operational matrix of fractional derivative[J]. 2014. [7] Ali H, Kamrujjaman M, Shirin A. Numerical solution of a fractional-order Bagley-Torvik equation by quadratic finite element method[J]. Journal of Applied Mathematics and Computing, 2020(3):1-17. [8] Saw V K, Kumar S. Numerical Solution of Fraction Bagley-Torvik Boundary Value Problem Based on Chebyshev Collocation Method[J]. International Journal of Applied and Computational Mathematics, 2019, 5(3). [9] Mall Susmita,Chakraverty S. A novel Chebyshev neural networkapproach for solving singular arbitrary order Lane-Emden equation arising inastrophysics.[J]. Network (Bristol,England), 2020, 31(1-4). [10] 李娜, 韩惠丽, 房彦兵. 基于Chebyshev神经网络的非线性Fredholm积分方程数值解法[J]. 吉林大学学报(理学版), 2020, 58(02):277-284. [11] 陈一鸣, 孙艳楠, 刘立卿, 柯小红. 基于拟Legendre多项式求解一类分数阶微分方程[J]. 计算数学, 2015, 37(01):21-33. [12] 郭宏伟, 庄晓莹. 采用两步优化器的深度配点法与深度能量法求解薄板弯曲问题[J]. 固体力学学报, 2021, 42(03):249-266. [13] 刘卫国, 陈昭平, 张颖. MATLAB程序设计与应用[M]. 高等教育出版社, 2002, 49-57. [14] El-Gamel M, Abd-El-Hady M, El-Azab M. Chelyshkov-Tau Approach for Solving Bagley-Torvik Equation[J]. Applied Mathematics, 2017, 08(12):1795-1807. [15] Secer A, Altun S, Bayram M. Legendre wavelet operational matrix method for solving fractional differential equations in some special conditions[J]. Thermal Science, 2019, 23:34-34. [16] Nemati S, Al-Haboobi A. Numerical solution of multi-order fractional differential equations using generalized Sine-Cosine wavelets[J]. Universal Journal of Mathematics and Applications, 2018, 1(4):215-225. [17] Saadatmandi A, Dehghan M. A new operational matrix for solving fractional-order differential equations[J]. Computers and Mathematics with Applications, 2010, 59(3):1326-1336. |
[1] | 赵卫东. 正倒向随机微分方程组的数值解法[J]. 计算数学, 2015, 37(4): 337-373. |
[2] | 宋福义, 高建芳. 一类非线性延迟微分方程数值解的振动性分析[J]. 计算数学, 2015, 37(4): 425-438. |
[3] | 王琦, 汪小明. 单物种人口模型指数隐式Euler方法的振动性[J]. 计算数学, 2015, 37(1): 57-66. |
[4] | 陈一鸣, 孙艳楠, 刘立卿, 柯小红. 基于拟Legendre多项式求解一类分数阶微分方程[J]. 计算数学, 2015, 37(1): 21-33. |
[5] | 闵文超, 黎稳, 柯日焕. 求解Hubbard线性系统的快速稳定算法[J]. 计算数学, 2014, 36(1): 1-15. |
[6] | 张春赛, 胡良剑. 时滞均值回复θ过程及其数值解的收敛性[J]. 计算数学, 2011, 33(2): 185-198. |
[7] | 王泽文, 张文. 基于遗传算法重建多个散射体的组合Newton法[J]. 计算数学, 2011, 33(1): 87-102. |
[8] | 苏京勋,刘继军,. 一类抛物型方程系数反问题的分裂算法[J]. 计算数学, 2008, 30(1): 99-12. |
[9] | 明亮,王宇平,. 关于一类遗传算法收敛速度的研究[J]. 计算数学, 2007, 29(1): 15-26. |
[10] | 袁敏,刘继军,. 二维逆散射问题探测方法的数值实现[J]. 计算数学, 2006, 28(2): 189-200. |
[11] | 杜其奎,余德浩. 凹角型区域椭圆边值问题的自然边界归化[J]. 计算数学, 2003, 25(1): 85-98. |
[12] | 吴勃英. 再生核空间偏微分方程解析数值解[J]. 计算数学, 2001, 23(2): 231-238. |
[13] | 邬吉明,余德浩. 三维调和问题的自然积分方程及其数值解[J]. 计算数学, 1998, 20(4): 419-430. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||