• 论文 • 上一篇    下一篇

基于GA-Chebyshev神经网络的分数阶Bagley-Torvik方程数值解法

胡行华, 秦艳杰   

  1. 辽宁工程技术大学优化与决策研究所, 阜新 123000
  • 收稿日期:2021-07-15 出版日期:2023-02-14 发布日期:2023-02-13
  • 基金资助:
    教育部人文社会科学研究(21YJCZH204)项目,辽宁省自然科学基金(2020-MS-301)和辽宁省教育厅高等学校基本科研项目(LJ2020ZD002,LJ2019JL005,2022lslwtkt-069)资助.

胡行华, 秦艳杰. 基于GA-Chebyshev神经网络的分数阶Bagley-Torvik方程数值解法[J]. 计算数学, 2023, 45(1): 109-129.

Hu Xinghua, Qin Yanjie. NUMERICAL SOLUTION OF FRACTIONAL BAGLEY-TORVIK EQUATIONS BASED ON GA-CHEBYSHEV NEURAL NETWORK[J]. Mathematica Numerica Sinica, 2023, 45(1): 109-129.

NUMERICAL SOLUTION OF FRACTIONAL BAGLEY-TORVIK EQUATIONS BASED ON GA-CHEBYSHEV NEURAL NETWORK

Hu Xinghua, Qin Yanjie   

  1. Institute of Optimization and Decision, Liaoning Technical University, Fuxin 123000, China
  • Received:2021-07-15 Online:2023-02-14 Published:2023-02-13
  • Supported by:
    The project was supported by the National Key Research and Development Program of China (2019YFC1905301);National Natural Science Foundation of China (22078115,21776108,21690083,22008078).
本文基于现有的切比雪夫神经网络, 提出了一种利用遗传算法优化切比雪夫神经网络求解分数阶 Bagley-Torvik 方程数值解的新方法, 结合多点处的泰勒公式原理, 给出数值解的一般形式, 将原问题转化为求解无约束最小化问题. 与现有数值方法的数值结果进行比较表明了本文方法的可行性和有效性, 为分数阶微分方程中类似问题的求解提供了新的思路.
In this article, based on the existing Chebyshev neural network, a new method using genetic algorithm to optimize the Chebyshev neural network to solve the numerical solution of fractional Bagley-Torvik equation is proposed. Combined with the Taylor’s formula principle at multiple points, the general form of numerical solution is given, and the original problem is transformed into an unconstrained minimization problem. The comparison with the numerical results of the existing numerical methods shows the feasibility and effectiveness of the proposed method, which provides a new idea for the solution of similar problems in fractional differential equations.

MR(2010)主题分类: 

()
[1] Luchko Y, Gorenflo R. An operational method for solving fractional differential equations with the Caputo derivatives[J]. Acta Mathematica Vietnamica, 1999, 24(2).
[2] Podlubny I. Fractional Differential Equations[C]. Mathematics in Science and Engineering. 1999.
[3] L, Gaul, P, et al. Damping description involving fractional operator[J]. Mechanical Systems and Signal Processing, 1991.
[4] Ray S S, Bera R K. Analytical solution of the Bagley Torvik equation by Adomian decomposition method[J]. Applied Mathematics and Computation, 2005, 168(1):398-410.
[5] Zahra W K, Elkholy S M. Cubic spline solution of fractional Bagley-Torvik equation. 2013. Tadjeran M. Finite difference approximations for two-sided space-fractional partial differential equations[J]. Applied Numerical Mathematics, 2006, 56(1):80-90.
[6] Mohammadi F. Numerical solution of Bagley-Torvik equation using Chebyshev wavelet operational matrix of fractional derivative[J]. 2014.
[7] Ali H, Kamrujjaman M, Shirin A. Numerical solution of a fractional-order Bagley-Torvik equation by quadratic finite element method[J]. Journal of Applied Mathematics and Computing, 2020(3):1-17.
[8] Saw V K, Kumar S. Numerical Solution of Fraction Bagley-Torvik Boundary Value Problem Based on Chebyshev Collocation Method[J]. International Journal of Applied and Computational Mathematics, 2019, 5(3).
[9] Mall Susmita,Chakraverty S. A novel Chebyshev neural networkapproach for solving singular arbitrary order Lane-Emden equation arising inastrophysics.[J]. Network (Bristol,England), 2020, 31(1-4).
[10] 李娜, 韩惠丽, 房彦兵. 基于Chebyshev神经网络的非线性Fredholm积分方程数值解法[J]. 吉林大学学报(理学版), 2020, 58(02):277-284.
[11] 陈一鸣, 孙艳楠, 刘立卿, 柯小红. 基于拟Legendre多项式求解一类分数阶微分方程[J]. 计算数学, 2015, 37(01):21-33.
[12] 郭宏伟, 庄晓莹. 采用两步优化器的深度配点法与深度能量法求解薄板弯曲问题[J]. 固体力学学报, 2021, 42(03):249-266.
[13] 刘卫国, 陈昭平, 张颖. MATLAB程序设计与应用[M]. 高等教育出版社, 2002, 49-57.
[14] El-Gamel M, Abd-El-Hady M, El-Azab M. Chelyshkov-Tau Approach for Solving Bagley-Torvik Equation[J]. Applied Mathematics, 2017, 08(12):1795-1807.
[15] Secer A, Altun S, Bayram M. Legendre wavelet operational matrix method for solving fractional differential equations in some special conditions[J]. Thermal Science, 2019, 23:34-34.
[16] Nemati S, Al-Haboobi A. Numerical solution of multi-order fractional differential equations using generalized Sine-Cosine wavelets[J]. Universal Journal of Mathematics and Applications, 2018, 1(4):215-225.
[17] Saadatmandi A, Dehghan M. A new operational matrix for solving fractional-order differential equations[J]. Computers and Mathematics with Applications, 2010, 59(3):1326-1336.
[1] 赵卫东. 正倒向随机微分方程组的数值解法[J]. 计算数学, 2015, 37(4): 337-373.
[2] 宋福义, 高建芳. 一类非线性延迟微分方程数值解的振动性分析[J]. 计算数学, 2015, 37(4): 425-438.
[3] 王琦, 汪小明. 单物种人口模型指数隐式Euler方法的振动性[J]. 计算数学, 2015, 37(1): 57-66.
[4] 陈一鸣, 孙艳楠, 刘立卿, 柯小红. 基于拟Legendre多项式求解一类分数阶微分方程[J]. 计算数学, 2015, 37(1): 21-33.
[5] 闵文超, 黎稳, 柯日焕. 求解Hubbard线性系统的快速稳定算法[J]. 计算数学, 2014, 36(1): 1-15.
[6] 张春赛, 胡良剑. 时滞均值回复θ过程及其数值解的收敛性[J]. 计算数学, 2011, 33(2): 185-198.
[7] 王泽文, 张文. 基于遗传算法重建多个散射体的组合Newton法[J]. 计算数学, 2011, 33(1): 87-102.
[8] 苏京勋,刘继军,. 一类抛物型方程系数反问题的分裂算法[J]. 计算数学, 2008, 30(1): 99-12.
[9] 明亮,王宇平,. 关于一类遗传算法收敛速度的研究[J]. 计算数学, 2007, 29(1): 15-26.
[10] 袁敏,刘继军,. 二维逆散射问题探测方法的数值实现[J]. 计算数学, 2006, 28(2): 189-200.
[11] 杜其奎,余德浩. 凹角型区域椭圆边值问题的自然边界归化[J]. 计算数学, 2003, 25(1): 85-98.
[12] 吴勃英. 再生核空间偏微分方程解析数值解[J]. 计算数学, 2001, 23(2): 231-238.
[13] 邬吉明,余德浩. 三维调和问题的自然积分方程及其数值解[J]. 计算数学, 1998, 20(4): 419-430.
阅读次数
全文


摘要