• 论文 • 上一篇    下一篇

变系数双侧空间回火分数阶对流-扩散方程的隐式中点法

殷学芬, 曹学年   

  1. 湘潭大学数学与计算科学学院, 湘潭 411105
  • 收稿日期:2021-10-13 出版日期:2023-05-14 发布日期:2023-05-13
  • 基金资助:
    国家自然科学基金(12071403)资助.

殷学芬, 曹学年. 变系数双侧空间回火分数阶对流-扩散方程的隐式中点法[J]. 计算数学, 2023, 45(2): 160-176.

Yin Xuefen, Cao Xuenian. THE IMPLICIT MIDPOINT METHOD FOR VARIABLE-COEFFICIENT TWO-SIDED SPACE TEMPERED FRACTIONAL DIFFUSION EQUATION[J]. Mathematica Numerica Sinica, 2023, 45(2): 160-176.

THE IMPLICIT MIDPOINT METHOD FOR VARIABLE-COEFFICIENT TWO-SIDED SPACE TEMPERED FRACTIONAL DIFFUSION EQUATION

Yin Xuefen, Cao Xuenian   

  1. School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China
  • Received:2021-10-13 Online:2023-05-14 Published:2023-05-13
针对带非线性源项的变系数双侧空间回火分数阶对流-扩散方程, 采用隐式中点法离散一阶时间偏导数, 中心差商公式离散对流项, 用二阶回火加权移位差分算子逼近左、右 Riemann-Liouville 空间回火分数阶偏导数, 构造了一类新的数值格式. 证明了数值方法的稳定性和收敛性, 且方法在时间和空间均为二阶收敛. 数值试验验证了数值方法的理论分析结果.
In this paper, an implicit midpoint method is applied to discretize the first order time partial derivative, the convection term discretized by central difference formula and the second order tempered and weighted and shifted Grünwald difference operator is used to approximate the left and right Riemann-Liouville space tempered fractional partial derivative, the numerical scheme is constructed for solving variable-coefficient two-sided space tempered fractional diffusion equation with a nonlinear source term. The energy method is used to prove the stability and convergence of the numerical scheme, and the time and space convergence order of the numerical scheme is second order. Numerical experiments demonstrate the effetiveness of the numerical schemes.

MR(2010)主题分类: 

()
[1] Baeumer B, Meerschaert M. Tempered stable Lévy motion and transient super-diffusion[J]. Journal of Computational and Applied Mathematics, 2010, 233:2438-2448.
[2] Carr P, Geman H, Madan D B, et al. Stochastic volatility for Lévy processes[J]. Mathematical Finance, 2003, 13(3):345-382.
[3] Chen M H, Deng W H. High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights[J]. SIAM Journal on Scientific Computing, 2015, 37(2):A890-A917.
[4] Çelik C, Duman M. Finite element method for a symmetric tempered fractional diffusion equation[J]. Applied Numerical Mathematics, 2017, 120:270-286.
[5] Ding H F, Li C P. High-order algorithms for Riesz derivative and their applications(III)[J]. Fractional Calculus and Applied Analysis, 2016, 19(1):19-55.
[6] Ding H F, Li C P. High-order numerical approximation formulas for Riemann-Liouville (Riesz) tempered fractional derivatives:Construction and application(II)[J]. Applied Mathematics Letters, 2018, 86:208-214.
[7] Ding H F, Li C P. A High-Order Algorithm for Time-Caputo-Tempered Partial Differential Equation with Riesz Derivatives in Two Spatial Dimensions[J]. Journal of Scientific Computing, 2019, 80(1):81-109.
[8] Deng W H, Zhang Z J. Numerical schemes of the time tempered fractional Feynman-Kac equation[J]. Computers and Mathematics with Applications, 2017, 73:1063-1076.
[9] Dehghan M, Abbaszadeh M, Deng W H. Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation[J]. Applied Mathematics Letters, 2017, 73:120-127.
[10] Guan W H, Cao X N. A Numerical Algorithm for the Caputo Tempered Fractional AdvectionDiffusion Equation[J]. Communications on Applied Mathematics and Computation, 2021, 3(1):41-59.
[11] 关文绘, 曹学年. Riesz回火分数阶平流-扩散方程的隐式中点方法[J]. 数值计算与计算机应用, 2020, 41(1):51-65.
[12] Hu D D, Cao X N. A fourth-order compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction-diffusion equation[J]. International Journal of Computer Mathematics, 2020, 97(9):1928-1948.
[13] Hu D D, Cao X N. The implicit midpoint method for Riesz tempered fractional diffusion equation with a nonlinear source term[J]. Advances in Difference Equations, 2019, 2019(1):66.
[14] 胡冬冬, 曹学年, 蒋慧灵. 带非线性源项的双侧空间分数阶扩散方程的隐式中点法[J]. 计算数学, 2019, 41(3):295-307.
[15] Li C, Deng W H. High order schemes for the tempered fractional diffusion equations[J]. Advances in Computational Mathematics, 2016, 42:543-572.
[16] Meerschaert M M, Zhang Y, Baeumer B. Tempered anomalous diffusion in heterogeneous systems[J]. Geophysical Research Letters, 2008, 35(17).
[17] Metzler R, Klafter J. The restaurant at the end of the random walk:recent developments in the description of anomalous transport by fractional dynamics[J]. Journal of Physics:Mathematical and General, 2004, 37:R161-R208.
[18] Mantegna R N, Stanley H E. Stochastic process with ultraslow convergence to a Gaussian:the truncated Lévy flight[J]. Physical Review Letters, 1994, 73(22):2946.
[19] Metzler R, Klafter J. The random walk's guide to anomalous diffusion:a fractional dynamics approach[J]. Physics Reports, 2000, 339(1):1-77.
[20] Qu W, Liang Y. Stability and convergence of the Crank-Nicolson scheme for a class of variablecoefficient tempered fractional diffusion equations[J]. Advances in Difference Equations, 2017, 108:1-11.
[21] Qiu Z S, Cao X N. Second-order numerical methods for the tempered fractional diffusion equations[J]. Advances in Difference Equations, 2019, 2019(1):1-23.
[22] 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的三阶数值格式[J]. 数值计算与计算机应用, 2020, 41(3):295-307.
[23] Sun X R, Zhao F Q, Chen S P. Numerical algorithms for the time-space tempered fractional Fokker-Planck equation[J]. Advances in Difference Equations, 2017, 2017(1):1-17.
[24] Sabzikar F, Meerschaert M M, Chen J H. Tempered fractional calculus[J]. Journal of Computational Physics, 2015, 293:14-28.
[25] Sokolov I M, Chechkin A V, Klafter J. Fractional diffusion equation for a power-law-truncated Lévy process[J]. Physica A:Statistical Mechanics and its Applications, 2004, 336(3-4):245-251.
[26] Yu Y Y, Deng W H, Wu Y J, Wu J. Positivity and boundedness preserving schemes for space-time fractional predator-prey reaction-diffusion model[J]. Computers & Mathematics with Applications, 2015, 69(8):743-759.
[27] Yu Y Y, Deng W H, Wu Y J, Wu J. Third order difference schemes (without using points outside of the domain) for one sided space tempered fractional partial differential equations[J]. Applied Numerical Mathematics, 2017, 112:126-145.
[28] Yu Y Y, Deng W H, Wu Y J. High-order quasi-compact difference schemes for fractional diffusion equations[J]. Communications in Mathematical Sciences, 2017, 15(5):1183-1209.
[29] Zhang Y X, Li Q, Ding H F. High-order numerical approximation formulas for Riemann-Liouville (Riesz) tempered fractional derivatives:construction and application(I)[J]. Applied Mathematics and Computation, 2018, 329:432-443.
[1] 王嘉华, 李宏. 粘弹性波动方程的H$^1$-Galerkin时空混合有限元分裂格式[J]. 计算数学, 2023, 45(2): 177-196.
[2] 肖滴琴, 曹学年. 带非线性源项的Riesz回火分数阶扩散方程的预估校正方法[J]. 计算数学, 2023, 45(1): 22-38.
[3] 王琳, 许珊珊, 王文强. 非线性随机分数阶延迟积分微分方程Euler-Maruyama方法的强收敛性[J]. 计算数学, 2023, 45(1): 57-73.
[4] 唐跃龙, 华玉春. 半线性抛物最优控制问题全离散插值系数有限元方法的收敛性分析[J]. 计算数学, 2023, 45(1): 130-140.
[5] 邓定文, 赵紫琳. 求解二维Fisher-KPP方程的一类保正保界差分格式及其Richardson外推法[J]. 计算数学, 2022, 44(4): 561-584.
[6] 胡婧玮. 非线性玻尔兹曼方程的傅里叶谱方法[J]. 计算数学, 2022, 44(3): 289-304.
[7] 郭洁, 万中. 求解大规模极大极小问题的光滑化三项共轭梯度算法[J]. 计算数学, 2022, 44(3): 324-338.
[8] 包学忠, 胡琳, 产蔼宁. 线性随机变时滞微分方程指数Euler方法的收敛性和稳定性[J]. 计算数学, 2022, 44(3): 339-353.
[9] 霍振阳, 张静娜, 黄健飞. 多项Caputo分数阶随机微分方程的Euler-Maruyama方法[J]. 计算数学, 2022, 44(3): 354-367.
[10] 贾旻茜, 张宇欣, 游雄. Hamilton系统的对称辛广义加性Runge-Kutta方法[J]. 计算数学, 2022, 44(3): 379-395.
[11] 李步扬. 曲率流的参数化有限元逼近[J]. 计算数学, 2022, 44(2): 145-162.
[12] 杨学敏, 牛晶, 姚春华. 椭圆型界面问题的破裂再生核方法[J]. 计算数学, 2022, 44(2): 217-232.
[13] 马玉敏, 蔡邢菊. 求解带线性约束的凸优化的一类自适应不定线性化增广拉格朗日方法[J]. 计算数学, 2022, 44(2): 272-288.
[14] 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33.
[15] 邵新慧, 亢重博. 基于分数阶扩散方程的离散线性代数方程组迭代方法研究[J]. 计算数学, 2022, 44(1): 107-118.
阅读次数
全文


摘要