• 论文 • 上一篇    下一篇

粘弹性波动方程的H$^1$-Galerkin时空混合有限元分裂格式

王嘉华, 李宏   

  1. 内蒙古大学数学科学学院, 呼和浩特, 010021
  • 收稿日期:2021-12-14 出版日期:2023-05-14 发布日期:2023-05-13
  • 通讯作者: 李宏, E-mail:smslh@imu.edu.cn
  • 基金资助:
    国家自然科学基金(12161063), 内蒙古自然科学基金(2021MS01018)和内蒙古自治区高等学校创新团队发展计划(NMGIRT2207)资助.

王嘉华, 李宏. 粘弹性波动方程的H$^1$-Galerkin时空混合有限元分裂格式[J]. 计算数学, 2023, 45(2): 177-196.

Wang Jiahua, Li Hong. H1-GAlERKIN SPACE TIME MIXED FINITE ELEMENT SPLITTING SCHEME FOR ONE-DIMENSIONAL VISCOELASTIC WAVE EQUATION[J]. Mathematica Numerica Sinica, 2023, 45(2): 177-196.

H1-GAlERKIN SPACE TIME MIXED FINITE ELEMENT SPLITTING SCHEME FOR ONE-DIMENSIONAL VISCOELASTIC WAVE EQUATION

Wang Jiahua, Li Hong   

  1. School of Mathematical Science, Inner Mongolia University, Hohhot 010021, China
  • Received:2021-12-14 Online:2023-05-14 Published:2023-05-13
构造一维粘弹性波动方程的H$^1$-Galerkin时空有限元分裂格式. 这种新的分裂格式在时空两个方向同时利用有限元离散, 具有H$^1$-Galerkin 混合有限元方法和时空有限元方法的优点, 如在不受LBB 相容性条件限制的同时能够高精度逼近流体的压力和达西速度, 有限元空间可以利用不同次数的多项式空间, 能同时得到时间和空间两个变量的形式高阶精度等. 通过构造时空投影算子并讨论其相关逼近性质, 证明了解的存在唯一性和稳定性, 给出混合时空有限元解的误差估计, 给出数值算例验证了理论推导结果的合理性和算法的有效性,并和传统H$^1$-Galerkin方法做比较,得到了更小的误差和超收敛阶.
An H1-Galerkin space time mixed finite element splitting scheme is constructed for one dimensional viscoelastic wave equations.The finite element discrete are used in both space and time direction in the new splitting scheme, and the approximate method inherits the advantages of H1-Galerkin mixed finite element method and space time finite element method.For example, it can approximate the fluid pressure and Darcy Velocity with high accuracy without limited LBB compatibility condition. The polynomial space of different degree can be used as the finite element space. The formal high order accuracy of the time and space variables can be obtained simultaneously. The existence and uniqueness, error estimation of the space time mixed finite element solution are proved by introducing the space time projections and discussing the properties of them. Numerical examples are given to verify the rationality of the theoretical results and the efficiency of the algorithm. In the meantime, comparing between the constructed space time scheme and traditional H1-Galerkin mixed finite element method, better error and super convergence order are obtained for the constructed space time scheme in this paper.

MR(2010)主题分类: 

()
[1] Chengyu S, Yunfei X, Xingyao Y, Hongchao P. Stability condition of finite difference solution for viscoelastic wave equations[J]. Earthquake Science, 2009, 22(5):479-485.
[2] Hong X, Zhendong L. Optimized finite difference iterative scheme based on POD technique for 2D viscoelastic wave equation[J]. Applied Mathematics and Mechanics, 2017, 38:1721-1732.
[3] Jin S J, Luo Z D. A Crank-Nicolson collocation spectral method for the two-dimensional viscoelastic waveequations[J]. Numer. Methods Part. Differ. Equ., 2019, 35:1080-1092.
[4] Larsson S, Thomee V and Wahlbin L B. Finite element methods for damped wave equation[J]. IMA. J. Numer. Anal, 1991, 11:115-142.
[5] Pani A K and Yuan J. Mixed finite elememt method for a strong damped wave equation.Numer Methods Partial Differential Equations[J]. 2001, 17:105-119.
[6] Xiuping W, Fuzheng G, Zhengjia S. Weak Galerkin finite element method for viscoelastic wave equations,Journal of Computational and Applied Mathematics[J]. 2020, 375:112816-112816.
[7] 高理平. 粘弹性拟线性波动方程的全离散有限元方法及数值分析[J]. 山东大学学报:自然科学版,2000, 35(3):246-251.
[8] Pani A K. An H1-Galerkin Mixed Finite Element Meth-od for Parabolic Partial Differential Equations[J]. SIAMJ. Numer.Anal., 1998, 25:712-727.
[9] Pani A K, Sinha R K and Otta A K. An H1-Galerkin mixed methods for second order hyperbolic equations[J]. Internat J Numer Anal Modeling, 2004, 1(2):111-129.
[10] 郭玲, 陈焕祯. Sobolev方程的H1-Galerkin混合有限元方法[J]. 系统科学与数学,2006, 26(3):301-314.
[11] Shi D Y and Wang H H. Nonconforming H1-Galerkin mixed FEM for Sobolev equations on anisotropic meshes. Acta Math. Appl. Sinica(English Ser.), 2009, 25(2):335-344.
[12] 陈红斌, 刘晓奇, 徐大. 粘弹性双曲型方程的H$^1$-Galerkin混合有限元方法[J]. 高等学校计算数学学报, 2011, 33(03):279-288.
[13] 王金凤, 刘洋, 李宏, 等. Sobolev方程的基于H1-Galerkin混合方法的新分裂格式[J]. 高等学校计算数学学报, 2014, 36(1):32-48.
[14] Aziz A K, Monk P. Continous finite element in space and time for the heat equation[J]. Math Comp, 1989, 52(186):255-274.
[15] 李宏, 杜春瑶, 赵智慧. 反应扩散方程的连续时空有限元方法[J]. 计算数学, 2017, 39(2):167-178.
[16] 赵智慧, 李宏, 罗振东. Sobolev方程的连续时空有限元方法[J]. 计算数学, 2016, 38(4):341-353.
[17] Dong Ziming, Li Hong. A space-time finite element method based on local projection stabilization in space and discontinuous Galerkin method in time for convection-diffusion-reaction equations[J]. Applied Mathematics and Computation, 2021, 397, DOI:10.1016/J.AMC.2020.125937.
[18] 罗振东. 混合有限元法基础及其应用[M]. 北京:科学出版社, 2006.
[19] Adams R A. Sobolev Spaces[M]. New York:Academic Press, 1975.
[20] LUO Z D and CHEN G. Proper orthogonal decomposition methods for partial differential equations[M]. San Diego:Academic Press of Elsevier,2018.
[1] 王金凤, 尹保利, 刘洋, 李宏. 四阶分数阶扩散波动方程的两网格混合元快速算法[J]. 计算数学, 2022, 44(4): 496-507.
[2] 李步扬. 曲率流的参数化有限元逼近[J]. 计算数学, 2022, 44(2): 145-162.
[3] 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505.
[4] 陈明卿, 谢小平. 随机平面线弹性问题的一类弱Galerkin方法[J]. 计算数学, 2021, 43(3): 279-300.
[5] 董自明, 李宏, 赵智慧, 唐斯琴. 对流扩散反应方程的局部投影稳定化连续时空有限元方法[J]. 计算数学, 2021, 43(3): 367-387.
[6] 曾玉平, 翁智峰, 胡汉章. 简化摩擦接触问题的对称弱超内罚间断Galerkin方法的先验和后验误差估计[J]. 计算数学, 2021, 43(2): 162-176.
[7] 房明娟, 阳莺, 唐鸣. 稳态Poisson-Nernst-Planck方程的残量型后验误差估计[J]. 计算数学, 2021, 43(1): 17-32.
[8] 王然, 张怀, 康彤. 求解带有非线性边界条件的涡流方程的A-φ解耦有限元格式[J]. 计算数学, 2021, 43(1): 33-55.
[9] 唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486.
[10] 关宏波, 洪亚鹏. 抛物型界面问题的变网格有限元方法[J]. 计算数学, 2020, 42(2): 196-206.
[11] 何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 计算数学, 2020, 42(1): 101-116.
[12] 贾仲孝, 孙晓琳. 计算矩阵函数双线性形式的Krylov子空间算法的误差分析[J]. 计算数学, 2020, 42(1): 117-130.
[13] 武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 计算数学, 2018, 40(2): 191-213.
[14] 葛志昊, 吴慧丽. 体积约束的非局部扩散问题的后验误差分析[J]. 计算数学, 2018, 40(1): 107-116.
[15] 程强, 熊向团. 时间分数次扩散方程反演源项问题的迭代正则化方法[J]. 计算数学, 2017, 39(3): 295-308.
阅读次数
全文


摘要