饶佳运, 黄娜
饶佳运, 黄娜. 解凸约束非线性单调方程组的无导数低存储Broyden族投影法[J]. 计算数学, 2023, 45(2): 197-214.
Rao Jiayun, Huang Na. A DERIVATIVE-FREE MEMORYLESS BROYDEN FAMILY PROJECTION METHOD FOR SOLVING NONLINEAR MONOTONE SYSTEMS WITH CONVEX CONSTRAINS[J]. Mathematica Numerica Sinica, 2023, 45(2): 197-214.
Rao Jiayun, Huang Na
MR(2010)主题分类:
分享此文:
[1] Wood A J, Wollenberg B F. Power generations, operations, and control. Wiley, New York, 1996. [2] Meintjes K, Morgan A.P. A methodology for solving chemical equilibrium systems[J]. Appl. Math. Comput., 1987, 22:333-361. [3] Prajna S, Parrilo P A, Rantzer A. Nonlinear control synthesis by convex optimization[J]. IEEE Trans. Automat. Control Eng., 2004, 49(2):310-314. [4] Dirkse S P, Ferris M C. MCPLIB:A collection of nonlinear mixed complementarity problems[J]. Optim. Methods Softw., 2012, 5(4):319-345. [5] Figueiredo M, Nowak R D, Wright S J. Gradient Projection for Sparse Reconstruction:Application to Compressed Sensing and Other Inverse Problems[J]. IEEE J-STSP, 2008, 1(4):586-597. [6] Zarantonello E H. Projections on Convex Sets in Hilbert Space and Spectral Theory:Part I. Projections on Convex Sets:Part II. Spectral Theory[J]. Revista de la Unión Matemática Argentina, 1971, 26:237-424. [7] Xiao Y, Zhu H. A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing[J]. J. Math. Anal. Appl., 2013, 405(1):310-319. [8] Aliyu M A, Kumam P, Auwal B A. A modified conjugate gradient method for monotone nonlinear equations with convex constraints[J]. Appl. Numer. Math., 2019, 145:507-520. [9] Zheng L, Yang L, Liang Y. A conjugate gradient projection method for solving equations with convex constraints[J]. J. Comput. Appl. Math., 375. [10] Awwal A M, Kumam P, Sitthithakerngkiet K, Abubakar M B, Abubakar S H. Ibrahim M.S.:Derivative-free method based on DFP updating formula for solving convex constrained nonlinear monotone equations and application[J]. AIMS Math., 2021, 6(8):8792-8814. [11] Ibrahim A H, Kumam P. Re-modified derivative-free iterative method for nonlinear monotone equations with convex constraints[J]. Ain Shams Eng. J., 2021. [12] Liu J, Feng Y. A derivative-free iterative method for nonlinear monotone equations with convex constraints[J]. Numer. Algorithms, 2019, 82(1):245-262. [13] Mahdi M M, Shiker M A K. Three terms of derivative free projection technique for solving nonlinear monotone equations[J]. J. Phys. Conf. Ser., 2020, 1591:012-031. [14] Solodov M V, Svaiter B F. A hybrid projection-proximal point algorithm[J]. J. Convex Anal., 1999, 6(1):59-70. [15] Solodov M V, Svaiter B F. A globally convergent inexact Newton method for systems of monotone equations. Reformulation:Nonsmooth, piecewise smooth, semismooth and smoothing methods. Springer, Boston, MA, 1998, 355-369. [16] Fletcher R, Powell M. A rapidly convergent descent method for minimization[J]. Comput. J., 1963, 6:163-168. [17] Davidon, William C. Variable metric method for minimization[J]. SIAM J. Optim., 1991, 1(1):1-17. [18] Ullah N, Sabi'U J., Shah A. A derivati-free scaling memoryless Broyden-Fletcher-Goldfarb-Shanno method for solving a system of monotone nonlinear equations[J]. Numer. Linear Algebra Appl., 2021(2). [19] Byrd R H, Nocedal J, Schnabel R B. Representations of quasi-Newton matrices and their use in limited memory methods[J]. Math. Program., 1994, 63(1-3):129-156. [20] Sun W, Yuan Y X. Potimization theory and methods. Nonlinear programming[M]. New York, NY:Springer Science+Business Media, 2006. [21] Zhang L, Zhou W J. Spectral gradient projection method for solving nonlinear monotone equations[J]. J. Comput. Appl. Math., 2006, 2:478-484. [22] Broyden C G. Quasi-Newton methods and their application to function minimisation[J]. Math. Comput., 1967, 21(99):368-368. [23] Sun W, Yuan Y X. Potimization theory and methods. Nonlinear programming[M]. New York, NY:Springer Science+Business Media, 2006. [24] Ou Y G, Li J Y. A new derivative-free SCG-type projection method for nonlinear monotone equations with convex constraints[J]. J. Appl. Math. Comput., 2018, 56(1-2):195-216. [25] Sun M, Tian M Y. A Class of Derivative-Free CG Projection Methods for Nonsmooth Equations with an Application to the LASSO Problem[J]. B. IRAN. MATH. SOC. 2020, 46(1), 183-205. [26] Figueiredo M, Nowak R, Wright S J. Gradient projection for sparse reconstruction, application to compressed sensing and other inverse problems[J]. IEEE J-STSP 2007:586-597. [27] Pang J S. Inexact Newton methods for the nonlinear complementary problem[J]. Math. Program., 1986, 36:54-71. [28] Xiao Y, Wang Q, Hu Q. Non-smooth equations based method for ȴ1-norm problems with applications to compressed sensing[J] Nonlinear Anal., 2011, 74(11):3570-3577. [29] Dolan E D, Moré J J. Benchmarking optimization software with performance profiles[J]. Math. Program., 2002, 91:201-213. |
[1] | 刘金魁, 孙悦, 赵永祥. 凸约束伪单调方程组的无导数投影算法[J]. 计算数学, 2021, 43(3): 388-400. |
[2] | 刘金魁. 解凸约束非线性单调方程组的无导数谱PRP投影算法[J]. 计算数学, 2016, 38(2): 113-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||