• 论文 • 上一篇    下一篇

一个分数阶生长-抑制系统的参数反问题

杨冰, 李功胜   

  1. 山东理工大学数学与统计学院, 淄博 255049
  • 收稿日期:2022-03-21 出版日期:2023-05-14 发布日期:2023-05-13
  • 通讯作者: 李功胜, Email:ligs@sdut.edu.cn
  • 基金资助:
    国家自然科学基金(11871313)和山东省自然科学基金(ZR2019MA021)资助.

杨冰, 李功胜. 一个分数阶生长-抑制系统的参数反问题[J]. 计算数学, 2023, 45(2): 215-229.

Yang Bing, Li Gongsheng. AN INVERSE COEFFICIENT PROBLEM FOR A FRACTIONAL-ORDER ACTIVATOR-INHIBITOR SYSTEM[J]. Mathematica Numerica Sinica, 2023, 45(2): 215-229.

AN INVERSE COEFFICIENT PROBLEM FOR A FRACTIONAL-ORDER ACTIVATOR-INHIBITOR SYSTEM

Yang Bing, Li Gongsheng   

  1. School of Math and Statist, Shandong University of Technology, Zibo 255049, China
  • Received:2022-03-21 Online:2023-05-14 Published:2023-05-13
本文研究一个分数阶生长-抑制线性系统模型及其参数反问题.首先利用Laplace逆变换得到正问题解的唯一存在性.其次, 考虑一个利用内点观测数据确定微分阶数与衰减率的反问题, 应用极值原理在Laplace像空间中证明反演的唯一性.最后, 基于正问题的有限差分解, 应用同伦正则化算法进行数值反演.计算结果表明算法的收敛性及反问题的数值稳定性.
This article deals with a linear fractional-order activator-inhibitor model and a related inverse coefficient problem. The unique existence of the solution to the forward problem is obtained based on the Laplace inverse transform. An inverse problem of determining the fractional order and the attenuation rate is investigated using the measurements at one interior point, and the uniqueness of the inverse problem is proved in the mapping space of Laplace transform by the maximum principle. An implicit finite difference scheme is established to give the numerical solution of the forward problem, and numerical inversions with noisy data are performed by the homotopy regularization algorithm. The inversion solutions approximate to the exact solution demonstrate the algorithm’s convergence and the numerical stability of the inverse problem.

MR(2010)主题分类: 

()
[1] Turing A M. The chemical basis of morphogebesis[J]. Philosophical Transactions of the Royal Society of London B, 1952, 237:37-72.
[2] 陈兰荪.数学生态学模型与研究方法[M].北京:科学出版社, 1988.
[3] Zhao X Q. Dynamical Systems in Population Biology[M]. Springer-Verlag, New York, Inc., 2003.
[4] 欧阳颀.非线性科学与斑图动力学导论[M].北京:北京大学出版社, 2010.
[5] Bai L and Wang K. Giplin-Ayala model with spatial diffusion and its optimal harvesting policy[J]. Appl. Math. Comput., 2005, 171:531-546.
[6] Chakraborty A, Singh M, Lucy D and Ridland P. Predator-prey model with prey-taxis and diffusion[J]. Math. Comput. Modelling, 2007, 46:482-498.
[7] Jin Y and Zhao X Q. Bistable waves for a class of cooperative reaction-diffusion systems[J]. J. Biol. Dynamics, 2008, 2:196-207.
[8] 杨文彬, 吴建华. 空间齐次和非齐次下活化-抑制模型动力学分析[J].数学物理学报, 2017, 37A(2):390-400.
[9] Li B W and Wang J. Anomalous heat conduction and anomalous diffusion in one-dimensional systems[J]. Phys. Rev. Lett., 2003, 91:044301.
[10] Golovin A A, Matkowsky B J and Volpert V A. Turing pattern formation in the brusselator model with superdiffusion[J]. SIAM J. Appl. Math., 2008, 69:251-272.
[11] 陈文, 孙洪广, 李西成, 等.力学与工程问题的分数阶导数建模[M].北京:科学出版社, 2010.
[12] Gambino G, Lombardo M C, Sammartino M and Sciacca V. Turing pattern formation in the Brusselator system with nonlinear diffusion[J]. Phys. Rev. E, 2013, 88:042925.
[13] Podlubny I. Fractional Differential Equations[M]. Academic Press, San Diego, 1999.
[14] Kilbas A A, Srivastava H M and Trujillo J J. Theory and Applications of Fractional Differential Equations[M]. Elsevier, Amsterdam, 2006.
[15] Henry B I and Wearne S L. Existence of Turing instabilities in a two-species fractional reactiondiffusion system[J]. SIAM J Appl. Math., 2002, 62:870-887.
[16] Henry B I and Langlands A M. Turing pattern formation in fractional activator-inhibitor system[J]. Physical Review E, 2005, 72:026101.
[17] Gafiychuk V V and Datsko B. Pattern formation in a fractional reaction-diffusion system[J]. Physica A, 2006, 365:300-306.
[18] Yana N and Michael J W. Dynamics and stability of spike-type solutions to a one dimensional Gierer-Meinhardt model with sub-diffusion[J]. Physica D, 2012, 241:947-963.
[19] Datsko B, Kutniv M and Wloch A. Mathematical modelling of pattern formation in activatorinhibitor reaction-diffusion systems with anomalous diffusion[J]. Journal of Mathematical Chemistry, 2020, 58:612-631.
[20] Rivero M, Trujillo J J, Vazquez L and Velasco P M. Fractional dynamics of populations[J]. Applied Mathematics and Computation, 2011, 218:1089-1095.
[21] Cheng J, Nakagawa J, Yamamoto M and Yamazaki T. Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation[J]. Inverse Problems, 2009, 25:115002.
[22] Sakamoto K and Yamamoto M. Initial value/boundary value problems for fractional diffusionwave equations and applications to some inverse problems[J]. Journal of Mathematical Analysis and Applications, 2011, 382:426-447.
[23] Li G S, Zhang D L, Jia X Z and Yamamoto M. Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation[J]. Inverse Problems, 2013, 29:065014.
[24]贾现正, 张大利, 李功胜, 池光胜, 李慧玲.空间-时间分数阶变系数对流扩散方程微分阶数的数值反演[J].计算数学, 2014, 36(2):113-132.
[25] Jin B T and Rundell W. A tutorial on inverse problems for anomalous diffusion processes[J]. Inverse Problems, 2015, 31:035003.
[26] Wei T, Li X L and Li Y S. An inverse time-dependent source problem for a time-fractional diffusion equation[J]. Inverse problems, 2016, 32:085003.
[27] Kian Y, Oksanen L, Soccorsi E and Yamamoto M. Global uniqueness in an inverse problem for time fractional diffusion equations[J]. Journal of Differential Equations, 2018, 264:1146-1170.
[28] Zheng X C, Cheng J and Wang H. Uniqueness of determining the variable fractional order in variable-order time-fractional diffusion equations[J]. Inverse Problms, 2019, 35:125002.
[29] Li Z Y, Fujishiro K and Li G S. Uniqueness in the inversion of distributed orders in ultraslow diffusion equations[J]. Journal of Computational and Applied Mathematics, 2020, 369:112564.
[30] Yamamoto M. Uniqueness in determining fractional orders of derivatives and initial values[J]. Inverse Problems, 2021, 37:095006.
[31] Fife P C and Arizona T. On modelling pattern formation by activator-inhibitor systems[J]. J. Math. Biology, 1977, 4:353-362.
[32] Garvie M R, Maini P K and Trenchea C. An efficient and robust numerical algorithm for estimating parameters in Turing systems[J]. J. Comput. Phys., 2010, 229:353-362.
[33] Garvie M R and Trenchea C. Identification of space-time distributed parameters in the GiererMeinhardt reaction-diffusion system[J]. SIAM J. Appl. Math., 2014, 74:147-166.
[34] Kubica A, Ryszewska K and Yamamoto M. Theory of Time-Fractional Differential Equations an Introduction[M]. Springer, Berlin, 2020.
[35] Sperb R P. Maximum Principles and Their Applications[M]. Academic Press, New York, 1981.
[36] 孙志忠, 高广花, 分数阶微分方程的差分方法(第二版)[M].北京:科学出版社, 2020.
[37] Zhang D L, Li G S, Jia X Z and Li H L. Simultaneous inversion for space-dependent diffusion coefficient and source magnitude in the time fractional diffusion equation[J]. Journal of Mathematics Research, 2013, 5:65-78.
[1] 王嘉华, 李宏. 粘弹性波动方程的H$^1$-Galerkin时空混合有限元分裂格式[J]. 计算数学, 2023, 45(2): 177-196.
[2] 王琳, 许珊珊, 王文强. 非线性随机分数阶延迟积分微分方程Euler-Maruyama方法的强收敛性[J]. 计算数学, 2023, 45(1): 57-73.
[3] 朱梦姣, 王文强. 非线性随机分数阶微分方程Euler方法的弱收敛性[J]. 计算数学, 2021, 43(1): 87-109.
[4] 刘金存, 李宏, 刘洋, 何斯日古楞. 非线性分数阶反应扩散方程组的间断时空有限元方法[J]. 计算数学, 2016, 38(2): 143-160.
[5] 崔霞, 岳晶岩. 守恒型扩散方程非线性离散格式的性质分析和快速求解[J]. 计算数学, 2015, 37(3): 227-246.
[6] 贾现正, 张大利, 李功胜, 池光胜, 李慧玲. 空间-时间分数阶变系数对流扩散方程微分阶数的数值反演[J]. 计算数学, 2014, 36(2): 113-132.
[7] 罗振东, 高骏强, 孙萍, 安静. 交通流模型基于特征投影分解技术的外推降维有限差分格式[J]. 计算数学, 2013, 35(2): 159-170.
[8] 张春赛, 胡良剑. 时滞均值回复θ过程及其数值解的收敛性[J]. 计算数学, 2011, 33(2): 185-198.
[9] 吴宏伟. 关于广义KPP方程的数值解[J]. 计算数学, 2009, 31(2): 137-150.
[10] 刘伟,袁益让,. 三维半导体器件问题在时空局部加密复合网格上的有限差分格式[J]. 计算数学, 2006, 28(2): 175-188.
[11] 汤华中. 一个刚性守恒律方程组的全隐式差分方法[J]. 计算数学, 2001, 23(2): 129-138.
[12] 袁光伟. 非线性抛物组非均匀网格差分解的唯一性和稳定性[J]. 计算数学, 2000, 22(2): 139-150.
阅读次数
全文


摘要