谢亚君
谢亚君. 求解大型最小二乘问题的混合贪婪随机坐标下降法[J]. 计算数学, 2023, 45(2): 230-239.
Xie Yajun. HYBRID GREEDY RANDOMIZED COORDINATE DESCENT METHOD FOR SOLVING LARGE-SCALE LINEAR LEAST SQUARE PROBLEM[J]. Mathematica Numerica Sinica, 2023, 45(2): 230-239.
Xie Yajun
MR(2010)主题分类:
分享此文:
[1] Bai Z Z, Wu W T. On greedy randomized coordinate descent methods for solving large linear least-squares problems[J]. Numer. Linear Algebra Appl., 2019, 26:e2237. [2] Bai Z Z, Wu W T. On greedy randomized Kaczmarz method for solving large sparse linear systems[J]. SIAM J. Sci. Comput., 2018, 40(1):592-606. [3] Bai Z Z, Wu W T. On partially randomized extended Kaczmarz method for solving large sparse overdetermined inconsistent linear systems[J]. Linear Algebra Appl., 2019, 578:225-250. [4] Bai Z Z, Wu W T. On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems[J]. Appl. Math. Lett., 2018, 83:21-26. [5] Bai Z Z, Wu W T. On convergence rate of the randomized Kaczmarz method[J]. Linear Algebra Appl., 2018, 553:252-269. [6] Bertsekas D P, Tsitsiklis J N. Parallel and Distributed Computation:Numerical Methods[M]. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1989. [7] Breheny P, Huang J. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[J]. Ann. Appl. Stat., 2011, 5(1):232-253. [8] Canutescu A A, Dunbrack J R. Cyclic coordinate descent:A robotics algorithm for protein loop closure[J]. Protein Sci., 2003, 12(5):963-972. [9] Chang K W, Hsieh C J, Lin C J. Coordinate descent method for large-scale L2-loss linear support vector machines[J]. J. Mach. Learn Res., 2008, 9:1369-1398. [10] Leventhal D, Lewis A S. Randomized methods for linear constraints:Convergence rates and conditioning[J]. Math. Oper. Res., 2010, 35(3):641-654. [11] Lu Z, Xiao L. On the complexity analysis of randomized block-coordinate descent methods[J]. Math. Program., 2015, 152(2):615-642. [12] Luo Z Q, Tseng P. On the convergence of the coordinate descent method for convex differentiable minimization[J]. J. Optim. Theory Appl., 1992, 72(1):7-35. [13] Luo, Z.Q., Tseng, P. Error bounds and convergence analysis of feasible descent methods:a general approach[J]. Annals of Operations Research, 1993, 46:157-178. [14] Ma A, Needell D, Ramdas A. Convergence properties of the randomized extended Gauss-Seidel and Kaczmarz methods[J]. SIAM J. Matrix Anal. Appl., 2015, 36(4):1590-1604. [15] Necoara I, Nesterov Y, Glineur F. Random block coordinate descent methods for linearly constrained optimization over networks[J]. J. Optim. Theory Appl., 2017, 173(1):227-254. [16] Nesterov Y. Efficiency of coordinate descent methods on huge-scale optimization problems[J]. SIAM J. Optim., 2012, 22(2):341-362. [17] Strohmer T, Vershynin R. A randomized Kaczmarz algorithm with exponential convergence[J]. J. Fourier Anal. Appl., 2009, 15:262-278. [18] Tseng P. Convergence of a block coordinate descent method for nondifferentiable minimization[J]. J. Optim. Theory Appl., 2001, 109(3):475-494. [19] Wright S J. Coordinate descent algorithms[J]. Math. Program., 2015, 151(1):3-34. [20] Xie Y J, Ke Y F. Finite iterative (R,S)-conjugate solutions of the generalized complex coupled Sylvester-transpose equations[J]. J. Appl. Anal. Comput., 2021, 11(1):309-332. [21] Xie Y J, Ke Y F. Neural network approaches based on new NCP-functions for solving tensor complementarity problem[J]. J. Appl. Math. Comput., 2021, 67:833-853. |
[1] | 缪树鑫. 关于“求解加权线性最小二乘问题的一类预处理GAOR方法”一文的注记[J]. 计算数学, 2022, 44(1): 89-96. |
[2] | 甘小艇. 状态转换下欧式Merton跳扩散期权定价的拟合有限体积方法[J]. 计算数学, 2021, 43(3): 337-353. |
[3] | 王丽, 罗玉花, 王广彬. 求解加权线性最小二乘问题的一类预处理GAOR方法[J]. 计算数学, 2020, 42(1): 63-79. |
[4] | 闫熙, 马昌凤. 求解矩阵方程AXB+CXD=F参数迭代法的最优参数分析[J]. 计算数学, 2019, 41(1): 37-51. |
[5] | 黄娜, 马昌凤, 谢亚君. 求解非对称代数Riccati 方程几个新的预估-校正法[J]. 计算数学, 2013, 35(4): 401-418. |
[6] | 范斌, 马昌凤, 谢亚君. 求解非线性互补问题的一类光滑Broyden-like方法[J]. 计算数学, 2013, 35(2): 181-194. |
[7] | 陈争, 马昌凤. 求解非线性互补问题一个新的 Jacobian 光滑化方法[J]. 计算数学, 2010, 32(4): 361-372. |
[8] | 孙清滢, 付小燕, 桑兆阳, 刘秋, 王长钰. 基于简单二次函数模型的带线搜索的信赖域算法[J]. 计算数学, 2010, 32(3): 265-274. |
[9] | 杨大地,刘冬兵,. 一类A(α)稳定的k阶线性k步法公式[J]. 计算数学, 2008, 30(2): 143-146. |
[10] | 刘新国,王卫国. 关于结构KKT方程组的扰动分析[J]. 计算数学, 2004, 26(2): 179-188. |
[11] | 刘晓青,曹礼群,崔俊芝. 复合材料弹性结构的高精度多尺度算法与数值模拟[J]. 计算数学, 2001, 23(3): 369-384. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||