• 青年评述 • 下一篇
刘歆1,2
刘歆. 强关联多电子体系的优化模型与算法[J]. 计算数学, 2023, 45(2): 141-159.
Liu Xin. OPTIMIZATION MODELS AND APPROACHES FOR STRONGLY CORRELATED ELECTRONS SYSTEMS[J]. Mathematica Numerica Sinica, 2023, 45(2): 141-159.
Liu Xin1,2
MR(2010)主题分类:
分享此文:
[1] Hohenberg P and Kohn W. Inhomogeneous electron gas[J]. Phys Rev, 1964, 136(3B):B864. [2] Kohn W and Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys Rev, 1965, 140(4A):A1133. [3] Cohen A J, Mori-Sánchez P and Yang W. Challenges for density functional theory[J]. Chem Rev, 2012, 112(1):289-320. [4] Gori-Giorgi P, Seidl M and Vignale G. Density-functional theory for strongly interacting electrons[J]. Phys Rev Lett, 2009, 103(16):166402. [5] Gori-Giorgi P and Seidl M. Density functional theory for strongly-interacting electrons:perspectives for physics and chemistry[J]. Phys Chem Chem Phys, 2010, 12(43):14405-14419. [6] Liu Z and Burke K. Adiabatic connection for strictly correlated electrons[J]. J Chem Phys, 2009, 131(12):124124. [7] Vuckovic S, Gerolin A, Daas T J, Bahmann H, Friesecke G and Gori-Giorgi P. Density functionals based on the mathematical structure of the strong-interaction limit of DFT[J]. Wiley Interdiscip Rev Comput Mol Sci, 2022:e1634. [8] Born M and Oppenheimer R. Zur quantentheorie der molekeln[J]. Ann Phys, 1927, 389(20):457-484. [9] Becke A D. Perspective:fifty years of density-functional theory in chemical physics[J]. J Chem Phys, 2014, 140(18):18A301. [10] Burke K. Perspective on density functional theory[J]. J Chem Phys, 2012, 136(15):150901. [11] Lin L, Lu J and Ying L. Numerical methods for Kohn-Sham density functional theory[J]. Acta Numer, 2019, 28:405-539. [12] Saad Y, Chelikowsky J R and Shontz S M. Numerical methods for electronic structure calculations of materials[J]. SIAM Rev, 2010, 52(1):3-54. [13] 戴小英. 电子结构计算的数值方法与理论[J]. 计算数学, 2020, 42(2):131-158. [14] Dreizler R M and Gross E K U. Density Functional Theory:an Approach to the Quantum ManyBody Problem[M]. Springer Science & Business Media, 2012. [15] Parr R G and Yang W. Density Functional Theory of Atoms and Molecules[M]. Oxford University Press, 1989. [16] Zhou A. Hohenberg-Kohn theorem for Coulomb type systems and its generalization[J]. J Math Chem, 2012, 50(10):2746-2754. [17] Zhou A. A mathematical aspect of Hohenberg-Kohn theorem[J]. Sci China Math, 2019, 62(1):63-68. [18] Levy M. Electron densities in search of Hamiltonians[J]. Phys Rev A, 1982, 26(3):1200. [19] Lieb E H. Density functionals for Coulomb systems[J]. Int J Quantum Chem, 1983, 24:243-277. [20] Slater J C. The theory of complex spectra[J]. Phys Rev, 1929, 34(10):1293. [21] Anisimov V I, Zaanen J and Andersen O K. Band theory and Mott insulators:Hubbard U instead of Stoner I[J]. Phys Rev B, 1991, 44(3):943. [22] Chen H, Friesecke G and Mendl C B. Numerical methods for a Kohn-Sham density functional model based on optimal transport[J]. J Chem Theory Comput, 2014, 10(10):4360-4368. [23] Cohen A J, Mori-Sánchez P and Yang W. Insights into current limitations of density functional theory[J]. Science, 2008, 321(5890):792-794. [24] Grüning M, Gritsenko O V and Baerends E J. Exchange-correlation energy and potential as approximate functionals of occupied and virtual Kohn-Sham orbitals:application to dissociating H2[J]. J Chem Phys, 2003, 118(16):7183-7192. [25] Ghosal A, Güçlü A D, Umrigar C J, Ullmo D and Baranger H U. Incipient Wigner localization in circular quantum dots[J]. Phys Rev B, 2007, 76(8):085341. [26] Seidl M, Perdew J P and Levy M. Strictly correlated electrons in density-functional theory[J]. Phys Rev A, 1999, 59(1):51. [27] Seidl M. Strong-interaction limit of density-functional theory[J]. Phys Rev A, 1999, 60(6):4387. [28] Seidl M, Perdew J P and Kurth S. Simulation of all-order density-functional perturbation theory, using the second order and the strong-correlation limit[J]. Phys Rev Lett, 2000, 84(22):5070. [29] Bindini U and De Pascale L. Optimal transport with Coulomb cost and the semiclassical limit of density functional theory[J]. J Éc polytech Math, 2017, 4:909-934. [30] Buttazzo G, De Pascale L and Gori-Giorgi P. Optimal-transport formulation of electronic densityfunctional theory[J]. Phys Rev A, 2012, 85(6):062502. [31] Cotar C, Friesecke G and Klüppelberg C. Density functional theory and optimal transportation with Coulomb cost[J]. Commun Pure Appl Math, 2013, 66(4):548-599. [32] Cotar C, Friesecke G and Klüppelberg C. Smoothing of transport plans with fixed marginals and rigorous semiclassical limit of the Hohenberg-Kohn functional[J]. Arch Ration Mech Anal, 2018, 228(3):891-922. [33] Malet F and Gori-Giorgi P. Strong correlation in Kohn-Sham density functional theory[J]. Phys Rev Lett, 2012, 109(24):246402. [34] Malet F, Mirtschink A, Cremon J C, Reimann S M and Gori-Giorgi P. Kohn-Sham density functional theory for quantum wires in arbitrary correlation regimes[J]. Phys Rev B, 2013, 87(11):115146. [35] Peyré G and Cuturi M. Computational optimal transport:with applications to data science[J]. Found Trends Mach Learn, 2019, 11(5-6):355-607. [36] Villani C. Topics in Optimal Transportation[M]. American Mathematical Society, 2021. [37] Lin T, Ho N, Cuturi M and Jordan M I. On the complexity of approximating multimarginal optimal transport[J]. J Mach Learn Res, 2022, 23:1-43. [38] Hu Y, Chen H and Liu X. A global optimization approach for multi-marginal optimal transport problems with Coulomb cost[J]. SIAM J Sci Comput, 2023, in press. [39] Friesecke G and Vögler D. Breaking the curse of dimension in multi-marginal Kantorovich optimal transport on finite state spaces[J]. SIAM J Math Anal, 2018, 50(4):3996-4019. [40] Mendl C B and Lin L. Kantorovich dual solution for strictly correlated electrons in atoms and molecules[J]. Phys Rev B, 2013, 87(12):125106. [41] Friesecke G, Mendl C B, Pass B, Cotar C and Klüppelberg C. N-density representability and the optimal transport limit of the Hohenberg-Kohn functional[J]. J Chem Phys, 2013, 139(16):164109. [42] Friesecke G, Schulz A S and Vögler D. Genetic column generation:fast computation of highdimensional multimarginal optimal transport problems[J]. SIAM J Sci Comput, 2022, 44(3):A1632-A1654. [43] Friesecke G, Gerolin A and Gori-Giorgi P. The strong-interaction limit of density functional theory. arXiv preprint arXiv:2202.09760, 2022. [44] Seidl M, Gori-Giorgi P and Savin A. Strictly correlated electrons in density-functional theory:a general formulation with applications to spherical densities[J]. Phys Rev A, 2007, 75(4):042511. [45] Seidl M, Di Marino S, Gerolin A, Nenna L, Giesbertz K J H and Gori-Giorgi P. The strictlycorrelated electron functional for spherically symmetric systems revisited. arXiv preprint arXiv:1702.05022, 2017. [46] De los Reyes J C. Numerical PDE-Constrained Optimization[M]. Springer, 2015. [47] Flegel M L and Kanzow C. On the Guignard constraint qualification for mathematical programs with equilibrium constraints[J]. Optimization, 2005, 54(6):517-534. [48] Sun W and Yuan Y. Optimization Theory and Methods:Nonlinear Programming[M]. Springer Science & Business Media, 2006. [49] Bednarek S, Szafran B, Chwiej T and Adamowski J. Effective interaction for charge carriers confined in quasi-one-dimensional nanostructures[J]. Phys Rev B, 2003, 68(4):045328. [50] Grossi J, Kooi D P, Giesbertz K J H, Seidl M, Cohen A J, Mori-Sánchez P and Gori-Giorgi P. Fermionic statistics in the strongly correlated limit of density functional theory[J]. J Chem Theory Comput, 2017, 13(12):6089-6100. [51] Zeldovich Y B and Popov V S. Electronic structure of superheavy atoms[J]. Sov Phys Usp, 1972, 14(6):673. [52] Hu Y and Liu X. The exactness of the ȴ1 penalty function for a class of mathematical programs with generalized complementarity constraints. arXiv preprint arXiv:2206.04844, 2022. [53] Liu G, Han J and Zhang J. Exact penalty functions for convex bilevel programming problems[J]. J Optim Theory Appl, 2001, 110(3):621-643. [54] Luo Z-Q, Pang J-S, Ralph D and Wu S. Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints[J]. Math Program, 1996, 75(1):19-76. [55] Pardalos P M and Vavasis S A. Quadratic programming with one negative eigenvalue is NPhard[J]. J Global Optim, 1991, 1(1):15-22. [56] Attouch H, Bolte J, Redont P and Soubeyran A. Proximal alternating minimization and projection methods for nonconvex problems:an approach based on the Kurdyka-Ƚojasiewicz inequality[J]. Math Oper Res, 2010, 35(2):438-457. [57] Attouch H, Bolte J and Svaiter B F. Convergence of descent methods for semi-algebraic and tame problems:proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[J]. Math Program, 2013, 137(1):91-129. [58] Auslender A. Asymptotic properties of the Fenchel dual functional and applications to decomposition problems[J]. J Optim Theory Appl, 1992, 73(3):427-449. [59] Bolte J, Sabach S and Teboulle M. Proximal alternating linearized minimization for nonconvex and nonsmooth problems[J]. Math Program, 2014, 146(1):459-494. [60] Tseng P. Convergence of a block coordinate descent method for nondifferentiable minimization[J]. J Optim Theory Appl, 2001, 109(3):475-494. [61] Xu Y and Yin W. A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion[J]. SIAM J Imaging Sci, 2013, 6(3):1758-1789. [62] Li X, Sun D and Toh K-C. On the efficient computation of a generalized Jacobian of the projector over the Birkhoff polytope[J]. Math Program, 2020, 179(1):419-446. [63] Frankel P, Garrigos G and Peypouquet J. Splitting methods with variable metric for Kurdyka- Lojasiewicz functions and general convergence rates[J]. J Optim Theory Appl, 2015, 165(3):874-900. [64] Hu Y and Liu X. The convergence properties of infeasible inexact proximal alternating linearized minimization[J]. Sci China Math, 2023, in press. [65] Colombo M and Di Marino S. Equality between Monge and Kantorovich multimarginal problems with Coulomb cost[J]. Ann Mat Pura Appl (1923-), 2015, 194(2):307-320. [66] Colombo M, De Pascale L and Di Marino S. Multimarginal optimal transport maps for onedimensional repulsive costs[J]. Canad J Math, 2015, 67(2):350-368. [67] Bindini U, De Pascale L and Kausamo A. On Seidl-type maps for multi-marginal optimal transport with Coulomb cost. arXiv preprint arXiv:2011.05063, 2020. [68] Papadimitriou C H and Steiglitz K. Combinatorial Optimization:Algorithms and Complexity (2nd Edition)[M]. Dover Publications, 1998. [69] Di Marino S and Gerolin A. Optimal transport losses and Sinkhorn algorithm with general convex regularization. arXiv preprint arXiv:2007.00976, 2020. [70] De Pascale L. Optimal transport with Coulomb cost. Approximation and duality[J]. ESAIM Math Model Numer Anal, 2015, 49(6):1643-1657. [71] Buttazzo G, Champion T and De Pascale L. Continuity and estimates for multimarginal optimal transportation problems with singular costs[J]. Appl Math Optim, 2018, 78(1):185-200. [72] Di Marino S, Gerolin A and Nenna L. Optimal transportation theory with repulsive costs[G]//Topological Optimization and Optimal Transport, 2017, 17:204-256. [73] Conn A R, Scheinberg K and Vicente L N. Introduction to Derivative-Free Optimization[M]. Society for Industrial and Applied Mathematics, 2009. [74] Larson J, Menickelly M and Wild S M. Derivative-free optimization methods[J]. Acta Numer, 2019, 28:287-404. [75] Powell M J D. The NEWUOA software for unconstrained optimization without derivatives[G]//Large-Scale Nonlinear Optimization. Springer, Boston, MA, 2006:255-297. [76] Lelotte R. Asymptotic of the Kantorovich potential for the optimal transport with Coulomb cost. arXiv preprint arXiv:2210.07830, 2022. [77] Khoo Y and Ying L. Convex relaxation approaches for strictly correlated density functional theory[J]. SIAM J Sci Comput, 2019, 41(4):B773-B795. [78] Yang L, Sun D and Toh K-C. SDPNAL+:a majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints[J]. Math Program Comput, 2015, 7(3):331-366. [79] Khoo Y, Lin L, Lindsey M and Ying L. Semidefinite relaxation of multimarginal optimal transport for strictly correlated electrons in second quantization[J]. SIAM J Sci Comput, 2020, 42(6):B1462-B1489. [80] Holland J H. Adaptation in Natural and Artificial Systems:an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence[M]. MIT press, 1992. [81] Desaulniers G, Desrosiers J and Solomon M M. Column Generation[M]. Springer Science & Business Media, 2006. [82] Arjovsky M, Chintala S and Bottou L. Wasserstein generative adversarial networks[C]//International Conference on Machine Learning. PMLR, 2017:214-223. |
[1] | 饶佳运, 黄娜. 解凸约束非线性单调方程组的无导数低存储Broyden族投影法[J]. 计算数学, 2023, 45(2): 197-214. |
[2] | 马玉敏, 蔡邢菊. 求解带线性约束的凸优化的一类自适应不定线性化增广拉格朗日方法[J]. 计算数学, 2022, 44(2): 272-288. |
[3] | 米玲, 薛文娟, 沈春根. 球面上$\ell_1$正则优化的随机临近梯度方法[J]. 计算数学, 2022, 44(1): 34-62. |
[4] | 唐耀宗, 杨庆之. 非线性特征值问题平移对称幂法的收敛率估计[J]. 计算数学, 2021, 43(4): 529-538. |
[5] | 马积瑞, 范金燕. 信赖域方法在Hölderian局部误差界下的收敛性质[J]. 计算数学, 2021, 43(4): 484-492. |
[6] | 胡雅伶, 彭拯, 章旭, 曾玉华. 一种求解非线性互补问题的多步自适应Levenberg-Marquardt算法[J]. 计算数学, 2021, 43(3): 322-336. |
[7] | 尹江华, 简金宝, 江羡珍. 凸约束非光滑方程组一个新的谱梯度投影算法[J]. 计算数学, 2020, 42(4): 457-471. |
[8] | 郭科, 韩德仁. 单调算子理论与分裂算法[J]. 计算数学, 2018, 40(4): 418-435. |
[9] | 姜帆, 刘雅梅, 蔡邢菊. 一类自适应广义交替方向乘子法[J]. 计算数学, 2018, 40(4): 367-386. |
[10] | 刘歆, 吴国宝, 张瑞, 张在坤. 一种连续的谱聚类优化模型[J]. 计算数学, 2018, 40(4): 354-366. |
[11] | 王福胜, 张瑞. 不等式约束极大极小问题的一个新型模松弛强次可行SQCQP算法[J]. 计算数学, 2018, 40(1): 49-62. |
[12] | 申远, 李倩倩, 吴坚. 一种基于邻近点算法的变步长原始-对偶算法[J]. 计算数学, 2018, 40(1): 85-95. |
[13] | 袁晓, 肖瑾. 受参考价格影响的变质产品销售最优动态价格和保存技术投资的联合策略研究[J]. 计算数学, 2017, 39(4): 363-377. |
[14] | 徐海文, 孙黎明. 一类凸优化的加速混合下降算法[J]. 计算数学, 2017, 39(2): 200-212. |
[15] | 刘金魁. 解凸约束非线性单调方程组的无导数谱PRP投影算法[J]. 计算数学, 2016, 38(2): 113-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||