• 论文 • 上一篇    下一篇

周毓麟先生在计算数学领域的成就与贡献——纪念周毓麟院士百年诞辰

北京应用物理与计算数学研究所   

  • 收稿日期:2022-12-31 出版日期:2023-02-14 发布日期:2023-02-13

北京应用物理与计算数学研究所. 周毓麟先生在计算数学领域的成就与贡献——纪念周毓麟院士百年诞辰[J]. 计算数学, 2023, 45(1): 3-7.

Institute of Applied Physics and Computational Mathematics. MR. ZHOU YULIN'S ACHIEVEMENTS AND CONTRIBUTIONS IN THE FIELD OF COMPUTATIONAL MATHEMATICS——IN MEMORY OF ACADEMICIAN ZHOU YULIN'S CENTENARY BIRTHDAY[J]. Mathematica Numerica Sinica, 2023, 45(1): 3-7.

MR. ZHOU YULIN'S ACHIEVEMENTS AND CONTRIBUTIONS IN THE FIELD OF COMPUTATIONAL MATHEMATICS——IN MEMORY OF ACADEMICIAN ZHOU YULIN'S CENTENARY BIRTHDAY

Institute of Applied Physics and Computational Mathematics   

  • Received:2022-12-31 Online:2023-02-14 Published:2023-02-13
  • Supported by:
    The project was supported by the National Key Research and Development Program of China (2019YFC1905301);National Natural Science Foundation of China (22078115,21776108,21690083,22008078).
本文从计算数学的视角, 介绍周毓麟先生在离散泛函分析方法和大型科学计算方法等领域的研究工作.
This paper introduces Mr. Zhou Yulin’s research work in the fields of discrete functional analysis methods and large-scale scientific computing methods from the perspective of computational mathematics.

MR(2010)主题分类: 

()
[1] Zhou Yulin. Interpolation formulas of intermediate quotients for discrete functions with several indices[J]. Journal of Computational Mathematics, 1984, 2(4):376-381.
[2] Zhou Yulin. On the general interpolation formulas for spaces of discrete functions (I)[J]. Journal of Computational Mathematics, 1993, 11(2):188-192.
[3] Zhou Yulin. General interpolation formulas for spaces of discrete functions with nonuniform meshes[J]. Journal of Computational Mathematics, 1995, 13(1):70-93.
[4] Zhou Yulin. Applications of Discrete Functional Analysis to Finite Difference Method[M]. International Academic Publishers, 1990.
[5] Zhou Yulin. Finite difference method of first boundary problem for quasilinear parabolic systems[J]. Scientia Sinica Series A, 1985, 28:368-385.
[6] Zhou Yulin, Shen Longjun and Han Zhen. Finite difference method of first boundary problem for quasilinear parabolic systems (continued)[J]. Science in China Series A, 1991, 34:405-418.
[7] Zhou Yulin, Shen Longjun and Yuan Guangwei. Finite difference method of first boundary problem for quasilinear parabolic systems (III), stability[J]. Science in China Series A, 1996, 39:685-693.
[8] Zhou Yulin, Shen Longjun and Yuan Guangwei. Finite difference method of first boundary problem for quasilinear parabolic systems (IV), convergence of iteration[J]. Science in China Series A, 1997, 40:469-474.
[9] Zhou Yulin, Shen Longjun and Yuan Guangwei. Finite difference method of first boundary problem for quasilinear parabolic systems (V), convergence of iterative difference schemes[J]. Science in China Series A, 1997, 40:1148-1157.
[10] Zhou Yulin. On the difference schemes with intrinsic parallelism for nonlinear parabolic systems[J]. Chinese Journal of Numerical Mathematics and Applicatons, 1996, 18:66-78.
[11] Zhou Yulin. Difference schemes with intrinsic parallelism for quasilinear parabolic systems[J]. Science in China Series A, 1997, 40:270-278.
[12] 周毓麟, 沈隆钧, 袁光伟. 非线性抛物方程组具有并行本性某些实用差分格式[J]. 数值分析与计算机应用, 1997, 18(1):64-73.
[13] Zhou Yulin and Yuan Guangwei. Difference method of general schemes with intrinsic parallelism for one-dimensional quasilinear parabolic systems with bounded measurable coefficients[J]. Journal of Partial Differential Equations, 1999, 12:213-228.
[14] Zhou Yulin and Yuan Guangwei. General difference schemes with intrinsic parallelism for semilinear parabolic systems of divergence type[J]. Journal of Computational Mathematics, 1999, 17(4):337-352.
[15] Yuan Guangwei, Shen Longjun and Zhou Yulin. Unconditional stability of alternating difference schemes with intrinsic parallelism for two dimensional parabolic systems[J]. Numerical Methods for Partial Differential Equations, 1999, 15:625-636.
[16] Yuan Guangwei, Shen Longjun and Zhou Yulin. Unconditional stability of parallel alternating difference schemes for semilinear parabolic systems[J]. Applied Mathematics and Computation, 2001, 117(2-3):267-283.
[17] Zhou Yulin, Yuan Guangwei and Shen Longjun. The unconditional stable and convergent difference methods with intrinsic parallelism for quasilinear parabolic systems[J]. Science in China Series A, 2004, 47(3):453-472.
[18] Zhou Yulin, Shen Longjun and Yuan Guangwei. Unconditional stable difference methods with intrinsic parallelism for semilinear parabolic systems of divergence type[J]. Chinese Annals of Mathematics, 2004, 25B(2):213-224.
[19] 周毓麟. 关于科学计算用数字电子计算机的字长与速度、内存的匹配关系的讨论[J]. 数值计算与计算机应用, 1980, 1(3):181-192
[20] 周毓麟, 袁国兴. 网络平均短程与网络乘积[J]. 计算物理, 2006, 23:133-136.
[1] 杨雪花, 刘艳玲, 张海湘. 计算高维带弱奇异核发展型方程的交替方向隐式欧拉方法[J]. 计算数学, 2023, 45(1): 39-56.
[2] 孙家昶. 数学物理方程离散特征值问题的几何网格因式分解算法[J]. 计算数学, 2022, 44(4): 433-465.
[3] 付姚姚, 曹礼群. 矩阵形式二次修正Maxwell-Dirac系统的多尺度算法[J]. 计算数学, 2019, 41(4): 419-439.
[4] 王坤, 张扬, 郭瑞. Helmholtz方程有限差分方法概述[J]. 计算数学, 2018, 40(2): 171-190.
[5] 王玉柱, 姜金荣, 迟学斌, 岳天祥. 并行准高斯高阶递归滤波算法研究[J]. 计算数学, 2014, 36(2): 179-194.
[6] 吴建平,李晓梅. 块三对角阵分解因子的估值与应用[J]. 计算数学, 2002, 24(3): 283-290.
[7] 汤华中,邬华谟. 离散速度动力学方程组的数值方法研究 Ⅰ.半隐式差分格式[J]. 计算数学, 2000, 22(2): 183-190.
[8] 陈丽容,刘德贵. 求解刚性常微分方程的并行Rosenbrock方法[J]. 计算数学, 1998, 20(3): 251-260.
[9] 谷同祥,刘兴平. 并行二级多分裂迭代方法[J]. 计算数学, 1998, 20(2): 153-.
阅读次数
全文


摘要