北京应用物理与计算数学研究所
北京应用物理与计算数学研究所. 周毓麟先生在计算数学领域的成就与贡献——纪念周毓麟院士百年诞辰[J]. 计算数学, 2023, 45(1): 3-7.
Institute of Applied Physics and Computational Mathematics. MR. ZHOU YULIN'S ACHIEVEMENTS AND CONTRIBUTIONS IN THE FIELD OF COMPUTATIONAL MATHEMATICS——IN MEMORY OF ACADEMICIAN ZHOU YULIN'S CENTENARY BIRTHDAY[J]. Mathematica Numerica Sinica, 2023, 45(1): 3-7.
Institute of Applied Physics and Computational Mathematics
[1] Zhou Yulin. Interpolation formulas of intermediate quotients for discrete functions with several indices[J]. Journal of Computational Mathematics, 1984, 2(4):376-381. [2] Zhou Yulin. On the general interpolation formulas for spaces of discrete functions (I)[J]. Journal of Computational Mathematics, 1993, 11(2):188-192. [3] Zhou Yulin. General interpolation formulas for spaces of discrete functions with nonuniform meshes[J]. Journal of Computational Mathematics, 1995, 13(1):70-93. [4] Zhou Yulin. Applications of Discrete Functional Analysis to Finite Difference Method[M]. International Academic Publishers, 1990. [5] Zhou Yulin. Finite difference method of first boundary problem for quasilinear parabolic systems[J]. Scientia Sinica Series A, 1985, 28:368-385. [6] Zhou Yulin, Shen Longjun and Han Zhen. Finite difference method of first boundary problem for quasilinear parabolic systems (continued)[J]. Science in China Series A, 1991, 34:405-418. [7] Zhou Yulin, Shen Longjun and Yuan Guangwei. Finite difference method of first boundary problem for quasilinear parabolic systems (III), stability[J]. Science in China Series A, 1996, 39:685-693. [8] Zhou Yulin, Shen Longjun and Yuan Guangwei. Finite difference method of first boundary problem for quasilinear parabolic systems (IV), convergence of iteration[J]. Science in China Series A, 1997, 40:469-474. [9] Zhou Yulin, Shen Longjun and Yuan Guangwei. Finite difference method of first boundary problem for quasilinear parabolic systems (V), convergence of iterative difference schemes[J]. Science in China Series A, 1997, 40:1148-1157. [10] Zhou Yulin. On the difference schemes with intrinsic parallelism for nonlinear parabolic systems[J]. Chinese Journal of Numerical Mathematics and Applicatons, 1996, 18:66-78. [11] Zhou Yulin. Difference schemes with intrinsic parallelism for quasilinear parabolic systems[J]. Science in China Series A, 1997, 40:270-278. [12] 周毓麟, 沈隆钧, 袁光伟. 非线性抛物方程组具有并行本性某些实用差分格式[J]. 数值分析与计算机应用, 1997, 18(1):64-73. [13] Zhou Yulin and Yuan Guangwei. Difference method of general schemes with intrinsic parallelism for one-dimensional quasilinear parabolic systems with bounded measurable coefficients[J]. Journal of Partial Differential Equations, 1999, 12:213-228. [14] Zhou Yulin and Yuan Guangwei. General difference schemes with intrinsic parallelism for semilinear parabolic systems of divergence type[J]. Journal of Computational Mathematics, 1999, 17(4):337-352. [15] Yuan Guangwei, Shen Longjun and Zhou Yulin. Unconditional stability of alternating difference schemes with intrinsic parallelism for two dimensional parabolic systems[J]. Numerical Methods for Partial Differential Equations, 1999, 15:625-636. [16] Yuan Guangwei, Shen Longjun and Zhou Yulin. Unconditional stability of parallel alternating difference schemes for semilinear parabolic systems[J]. Applied Mathematics and Computation, 2001, 117(2-3):267-283. [17] Zhou Yulin, Yuan Guangwei and Shen Longjun. The unconditional stable and convergent difference methods with intrinsic parallelism for quasilinear parabolic systems[J]. Science in China Series A, 2004, 47(3):453-472. [18] Zhou Yulin, Shen Longjun and Yuan Guangwei. Unconditional stable difference methods with intrinsic parallelism for semilinear parabolic systems of divergence type[J]. Chinese Annals of Mathematics, 2004, 25B(2):213-224. [19] 周毓麟. 关于科学计算用数字电子计算机的字长与速度、内存的匹配关系的讨论[J]. 数值计算与计算机应用, 1980, 1(3):181-192 [20] 周毓麟, 袁国兴. 网络平均短程与网络乘积[J]. 计算物理, 2006, 23:133-136. |
[1] | 杨雪花, 刘艳玲, 张海湘. 计算高维带弱奇异核发展型方程的交替方向隐式欧拉方法[J]. 计算数学, 2023, 45(1): 39-56. |
[2] | 孙家昶. 数学物理方程离散特征值问题的几何网格因式分解算法[J]. 计算数学, 2022, 44(4): 433-465. |
[3] | 付姚姚, 曹礼群. 矩阵形式二次修正Maxwell-Dirac系统的多尺度算法[J]. 计算数学, 2019, 41(4): 419-439. |
[4] | 王坤, 张扬, 郭瑞. Helmholtz方程有限差分方法概述[J]. 计算数学, 2018, 40(2): 171-190. |
[5] | 王玉柱, 姜金荣, 迟学斌, 岳天祥. 并行准高斯高阶递归滤波算法研究[J]. 计算数学, 2014, 36(2): 179-194. |
[6] | 吴建平,李晓梅. 块三对角阵分解因子的估值与应用[J]. 计算数学, 2002, 24(3): 283-290. |
[7] | 汤华中,邬华谟. 离散速度动力学方程组的数值方法研究 Ⅰ.半隐式差分格式[J]. 计算数学, 2000, 22(2): 183-190. |
[8] | 陈丽容,刘德贵. 求解刚性常微分方程的并行Rosenbrock方法[J]. 计算数学, 1998, 20(3): 251-260. |
[9] | 谷同祥,刘兴平. 并行二级多分裂迭代方法[J]. 计算数学, 1998, 20(2): 153-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||