• 论文 • 上一篇    下一篇

对称正定线性方程组具有任意权矩阵的多分裂迭代求解

温瑞萍1, 孟国艳2, 王川龙1   

  1. 1. 太原师范学院数学系, 太原 030012;
    2. 忻州师范学院计算机科学系, 山西忻州 034000
  • 收稿日期:2013-01-10 出版日期:2014-02-15 发布日期:2014-02-12
  • 基金资助:

    国家自然科学基金(11071184)项目,山西省自然科学基金(2010011006,2012011015-6)项目资助.

温瑞萍, 孟国艳, 王川龙. 对称正定线性方程组具有任意权矩阵的多分裂迭代求解[J]. 计算数学, 2014, 36(1): 27-34.

Wen Ruiping, Meng Guoyan, Wang Chuanlong. MULTISPLITTING ITERATIVE METHODS WITH GENERAL WEIGHTING MATRICES FOR SOLVING SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEMS[J]. Mathematica Numerica Sinica, 2014, 36(1): 27-34.

MULTISPLITTING ITERATIVE METHODS WITH GENERAL WEIGHTING MATRICES FOR SOLVING SYMMETRIC POSITIVE DEFINITE LINEAR SYSTEMS

Wen Ruiping1, Meng Guoyan2, Wang Chuanlong1   

  1. 1. Department of Mathematics, Taiyuan Normal University, Taiyuan 030012, China;
    2. Department of computer Science, Xinzhou Normal University, Xinzhou 034000, Shanxi, China
  • Received:2013-01-10 Online:2014-02-15 Published:2014-02-12
本文利用优化模型研究求解对称正定线性方程组Ax=b的多分裂并行算法的权矩阵. 在我们的多分裂并行算法中,m个分裂仅要求其中之 一为P-正则分裂而其余的则可以任意构造,这不仅大大降低了构造多分裂的难度, 而且也放宽了对权矩阵的限制(不像标准的多分裂迭代方法中要求权矩阵为预先给 定的非负数量矩阵). 并且证明了新的多分裂迭代法 是收敛的. 最后,通过数值例子展示了新算法的有效性.
By making use of optimal models, we study the weighting matrices of the multisplitting parallel methods for solving the symmetric positive definite linear system Ax=b. In our multisplitting there is only one that is required to be P-regular splitting and all the others can be constructed arbitrarily, which not only decreases the difficulty of constructing the multisplitting of the coefficient matrix A, but also relaxes the constraints to the weighting matrices (unlike the standard methods, they are not necessarily nonnegative diagonal scalar matrices or given in advance). We then prove the convergence of this new method. Finally, numerical experiments show that the method is efficient.

MR(2010)主题分类: 

()
[1] Migallón V, Penadés J. Convergence of two-stage iterative methods for hermitian positive definite matrices[J]. Appl. Math. Lett., 1997, 10: 79-83.

[2] Bai Z Z. A new generalized asynchronous parallel multisplitting iteration method[J]. J. Comput. Math., 1999, 17: 449-456.

[3] Bai Z Z. On the convergence of parallel nonstationary multisplitting iteration methods[J]. J. Comput. Appl. Math., 2003, 159: 1-11.

[4] Bai Z Z, Benzi M, Chen F. Modified HSS iteration methods for a class of complex symmetric linear systems[J]. Computing, 2010, 87: 93-111.

[5] Bai Z Z , Sun J C, Wang D R. A unified framework for the construction of various matrix multislpitting iterative methods for large sparse system of linear equations[J]. Comput. Math. Appl., 1996, 32: 51-76.

[6] Bai Z Z, Evans D J. Blockwise matrix multi-splitting multi-parameter block relaxation methods[J]. Int. J. Comput. Math., 1997, 64: 103-118.

[7] Bru R, Elsner L, Neumann M. Models of parallel chaotic iteration methods[J]. Linear Algebra Appl., 1988, 103: 175-192.

[8] Bru R, Migallón V, Penadés J, Szyld D.-B. Parallel synchronous and asynchronous two-stage multisplitting methods[J]. Electron. Trans. Numer. Anal., 1995, 3: 24-38.

[9] Cao Z H. Nonstationary two-stage multisplitting methods with overlapping blocks[J]. Linear Algebra Appl., 1998, 285: 153-163.

[10] Cao Z H, Liu Z Y. Symmetric multisplitting methods of a symmetric positive definite matrix[J]. Linear Algebra Appl., 1998, 285: 309-319.

[11] Castel M J, Migallón V, Penadés J. Convergence of non-stationary multisplitting methods for Hermitian positive definite matrices[J]. Math. Comput., 1998, 67: 209-220.

[12] Frommer A, Mayer G. Convergence of relaxed parallel multisplitting methods[J]. Linear Algebra Appl., 1989, 119: 141-152.

[13] Frommer A, Syzld D B. Weighted max norms, splitttngs, and overlapping additive Schwarz iterations[ J]. Numer. Math., 1997, 5: 48-62.

[14] Jones M T, Szyld D B. Two-stage multisplitting methods with overlapping blocks[J]. Numer. Linear Algebra Appl., 1996, 3: 113-124.

[15] Migallón V., Penadés J, Szyld D B. Nonstationary multisplttings with general weighting matrices[ J]. SIAM J. Matrix Anal. Appl., 2001, 22: 1089-1094.

[16] Nabben R. A note on comparison theorems for splittings and multisplittings of Hermitian positive definite matrices[J]. Linear Algebra Appl., 1996, 233: 67-83.

[17] Neuman M, Plemmons R J. Convergence of parallel multisplitting iterative methods for Mmatrices[ J]. Linear Algebra Appl., 1987, 88: 559-573.

[18] O'Leary D P, White R. Multi-splittings of matrices and parallel solutions of linear systems[J]. SIAM J. Alg. Discr. Meth., 1985, 6: 630-640.

[19] Szyld D B, Jones M T. Two-stage and multisplitting methods for the parallel solution of linear systems[J]. SIAM J. Matrix Anal. Appl., 1992, 13: 671-679.

[20] Wang D R. On the convergence of the parallel multisplitting AOR algorithm[J]. Linear Algebra Appl., 1991, 154/156: 473-486.

[21] Wang D R, Bai Z Z, Evans D J. A class of asynchronous parallel matrix multisplitting relaxation method[J]. Parallel Algorithms Appl., 1994, 2: 173-192.

[22] Wen R P, Wang C L, Meng G Y. Convergence theorems for block splitting iterative methods for linear systems[J]. J. Comput. Appl. Math., 2007, 202: 540-547.

[23] White R E. Multisplitting with different weighting schemes[J]. SIAM J. Matrix Anal. Appl., 1998, 10: 481-493.

[24] White R E. Multisplitting of a symmetric positive definite matrix[J]. SIAM J. Matrix Anal. Appl., 1990, 11: 69-82.
[1] 邓定文, 赵紫琳. 求解二维Fisher-KPP方程的一类保正保界差分格式及其Richardson外推法[J]. 计算数学, 2022, 44(4): 561-584.
[2] 郭洁, 万中. 求解大规模极大极小问题的光滑化三项共轭梯度算法[J]. 计算数学, 2022, 44(3): 324-338.
[3] 包学忠, 胡琳, 产蔼宁. 线性随机变时滞微分方程指数Euler方法的收敛性和稳定性[J]. 计算数学, 2022, 44(3): 339-353.
[4] 霍振阳, 张静娜, 黄健飞. 多项Caputo分数阶随机微分方程的Euler-Maruyama方法[J]. 计算数学, 2022, 44(3): 354-367.
[5] 吴宇虹, 马昌凤. 求解广义绝对值方程的交替牛顿矩阵多分裂方法[J]. 计算数学, 2022, 44(3): 422-432.
[6] 李步扬. 曲率流的参数化有限元逼近[J]. 计算数学, 2022, 44(2): 145-162.
[7] 杨学敏, 牛晶, 姚春华. 椭圆型界面问题的破裂再生核方法[J]. 计算数学, 2022, 44(2): 217-232.
[8] 马玉敏, 蔡邢菊. 求解带线性约束的凸优化的一类自适应不定线性化增广拉格朗日方法[J]. 计算数学, 2022, 44(2): 272-288.
[9] 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33.
[10] 邵新慧, 亢重博. 基于分数阶扩散方程的离散线性代数方程组迭代方法研究[J]. 计算数学, 2022, 44(1): 107-118.
[11] 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443.
[12] 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321.
[13] 李旭, 李明翔. 连续Sylvester方程的广义正定和反Hermitian分裂迭代法及其超松弛加速[J]. 计算数学, 2021, 43(3): 354-366.
[14] 张丽丽, 任志茹. 改进的分块模方法求解对角占优线性互补问题[J]. 计算数学, 2021, 43(3): 401-412.
[15] 邱泽山, 曹学年. 带漂移的单侧正规化回火分数阶扩散方程的Crank-Nicolson拟紧格式[J]. 计算数学, 2021, 43(2): 210-226.
阅读次数
全文


摘要