• 论文 • 上一篇    下一篇

带非线性源项的双侧空间分数阶扩散方程的隐式中点方法

胡冬冬, 曹学年, 蒋慧灵   

  1. 湘潭大学数学与计算科学学院, 湘潭 411105
  • 收稿日期:2017-12-14 出版日期:2019-09-15 发布日期:2019-08-21

胡冬冬, 曹学年, 蒋慧灵. 带非线性源项的双侧空间分数阶扩散方程的隐式中点方法[J]. 计算数学, 2019, 41(3): 295-307.

Hu Dongdong, Cao Xuenian, Jiang Huiling. THE IMPLICIT MIDPOINT METHOD FOR TWO-SIDE SPACE FRACTIONAL DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM[J]. Mathematica Numerica Sinica, 2019, 41(3): 295-307.

THE IMPLICIT MIDPOINT METHOD FOR TWO-SIDE SPACE FRACTIONAL DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM

Hu Dongdong, Cao Xuenian, Jiang Huiling   

  1. School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China
  • Received:2017-12-14 Online:2019-09-15 Published:2019-08-21
本文用隐式中点方法离散一阶时间偏导数,并用拟紧差分算子逼近Riemann-Liouville空间分数阶偏导数,构造了求解带非线性源项的空间分数阶扩散方程的数值格式.给出了数值方法的稳定性和收敛性分析.数值试验表明数值方法是有效的.
In this paper, the numerical scheme was constructed for solving the space fractional diffusion equation with a nonlinear source term where the implicit midpoint method was applied to discretize the first order time partial derivative, and the quasi-compact difference operator was utilized to approximate Riemann-Liouville space fractional partial derivative. Stability and convergence analysis of this numerical method were given. Numerical experiments show that the numerical method is effective.

MR(2010)主题分类: 

()
[1] Hao Z, Sun Z, Cao W. A fourth-order approximation of fractional derivatives with its applications[J]. Journal of Computational Physics, 2015, 281:787-805.

[2] Zhou H, Tian W, Deng W. Quasi-compact finite difference schemes for space fractional diffusion equations[J]. Journal of Scientific Computing, 2013, 56(1):45-66.

[3] Yu Y, Deng W, Wu Y. High-order quasi-compact difference schemes for fractional diffusion equations[J]. Communications in Mathematical Sciences, 2017, 15(5):1183-1209.

[4] Cao X, Cao X, Wen L. The implicit midpoint method for the modified anomalous sub-diffusion equation with a nonlinear source term[J]. Journal of Computational and Applied Mathematics, 2017, 318:199-210.

[5] Choi H, Chung S, Lee Y. Numerical solutions for space-fractional dispersion equations with nonlinear source terms[J]. Bulletin of the Korean Mathematical Society, 2010, 47(6):1225-1234.

[6] Moroney T, Yang Q. Efficient solution of two-sided nonlinear space-fractional diffusion equations using fast poisson preconditioners[J]. Journal of Computational Physics, 2013, 246(246):304-317.

[7] Liu F, Chen S, Turner I, Burrage K, Anh V. Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term[J]. Central European Journal of Physics, 2013, 11(10):1221-1232.

[8] Chen S, Liu F, Jiang. X, Turner I, Anh V. A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients[J]. Applied Mathematics and Computation, 2015, 257:591-601.

[9] Bu W, Tang Y, Wu Y, Yang J. Crank-Nicolson ADI Galerkin finite element method for twodimensional fractional FitzHugh-Nagumo monodomain model[J]. Applied Mathematics and Computation, 2015, 257:355-364.

[10] Choi Y, Chung S. Finite element solutions for the space-fractional diffusion equation with a nonlinear source term[J]. Abstract and Applied Analysis, 2012, 2012:183-201.

[11] Li Y, Wang D. Improved efficient difference method for the modified anomalous sub-diffusion equation with a nonlinear source term[J]. International Journal of Computer Mathematics, 2017, 94(4):821-840.

[12] Chan R, Jin X. An Introduction to Iterative Toeplitz Solvers[M]. Philadelphia:SIAM, 2007.

[13] Kilbas A, Srivastava H, Trujillo J. Theory and Applications of Fractional Differential Equations[M]. Elsevier Science Limited, 2006.

[14] Meerschaert M, Tadjeran C. Finite difference approximations for fractional advection dispersion flow equations[J]. Journal of Computational and Applied Mathematics, 2004, 172(1):65-77.

[15] Liu F, Zhang H. Numerical simulation of the Riesz fractional diffusion equation with a nonlinear source term[J], Journal of Applied Mathematics and Informatics, 2008, 26(1-2):1-14.

[16] Pang H, Sun H. Fourth order finite difference schemes for time space fractional sub-diffusion equations[J]. Computers & Mathematics with Applications, 2016, 71(6):1287-1302.

[17] Liu Y, Du Y, Li H, He S, Gao W. Finite difference/finite element method for a nonlinear timefractional fourth-order reaction-diffusion problem[J]. Computers & Mathematics with Applications, 2015, 70(4):573-591.

[18] Liu Y, Du Y, Li H, Wang J. A two-grid finite element approximation for a nonlinear time-fractional Cable equation[J]. Nonlinear Dynamics, 2016, 85(4):2535-2548.

[19] Wang D, Xiao A, Yang W. Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative[J]. Journal of Computational Physics, 2013, 242(242):670-681.
[1] 邓定文, 赵紫琳. 求解二维Fisher-KPP方程的一类保正保界差分格式及其Richardson外推法[J]. 计算数学, 2022, 44(4): 561-584.
[2] 胡婧玮. 非线性玻尔兹曼方程的傅里叶谱方法[J]. 计算数学, 2022, 44(3): 289-304.
[3] 郭洁, 万中. 求解大规模极大极小问题的光滑化三项共轭梯度算法[J]. 计算数学, 2022, 44(3): 324-338.
[4] 包学忠, 胡琳, 产蔼宁. 线性随机变时滞微分方程指数Euler方法的收敛性和稳定性[J]. 计算数学, 2022, 44(3): 339-353.
[5] 霍振阳, 张静娜, 黄健飞. 多项Caputo分数阶随机微分方程的Euler-Maruyama方法[J]. 计算数学, 2022, 44(3): 354-367.
[6] 贾旻茜, 张宇欣, 游雄. Hamilton系统的对称辛广义加性Runge-Kutta方法[J]. 计算数学, 2022, 44(3): 379-395.
[7] 李步扬. 曲率流的参数化有限元逼近[J]. 计算数学, 2022, 44(2): 145-162.
[8] 杨学敏, 牛晶, 姚春华. 椭圆型界面问题的破裂再生核方法[J]. 计算数学, 2022, 44(2): 217-232.
[9] 马玉敏, 蔡邢菊. 求解带线性约束的凸优化的一类自适应不定线性化增广拉格朗日方法[J]. 计算数学, 2022, 44(2): 272-288.
[10] 余妍妍, 代新杰, 肖爱国. 非自治刚性随机微分方程正则EM分裂方法的收敛性和稳定性[J]. 计算数学, 2022, 44(1): 19-33.
[11] 邵新慧, 亢重博. 基于分数阶扩散方程的离散线性代数方程组迭代方法研究[J]. 计算数学, 2022, 44(1): 107-118.
[12] 古振东. 非线性弱奇性Volterra积分方程的谱配置法[J]. 计算数学, 2021, 43(4): 426-443.
[13] 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505.
[14] 包学忠, 胡琳. 随机变延迟微分方程平衡方法的均方收敛性与稳定性[J]. 计算数学, 2021, 43(3): 301-321.
[15] 李旭, 李明翔. 连续Sylvester方程的广义正定和反Hermitian分裂迭代法及其超松弛加速[J]. 计算数学, 2021, 43(3): 354-366.
阅读次数
全文


摘要