董自明1,2, 李宏1, 赵智慧1, 唐斯琴1
董自明, 李宏, 赵智慧, 唐斯琴. 对流扩散反应方程的局部投影稳定化连续时空有限元方法[J]. 计算数学, 2021, 43(3): 367-387.
Dong Ziming, Li Hong, Zhao Zhihui, Tang Siqin. LOCAL PROJECTION STABILIZATION CONTINUOUS SPACE-TIME FINITE ELEMENT METHOD FOR CONVECTION-DIFFUSION-REACTION EQUATIONS[J]. Mathematica Numerica Sinica, 2021, 43(3): 367-387.
Dong Ziming1,2, Li Hong1, Zhao Zhihui1, Tang Siqin1
MR(2010)主题分类:
分享此文:
[1] Douglas J, Russell T F. Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures[J]. SIAM J. Numer. Anal., 1982, 19(5):871-885. [2] Cockburn B, Shu C W. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems[J]. J. Sci. Comput., 2001, 16(3):173-261. [3] John V, Novo J. Error analysis of the SUPG finite element discretization of evolutionary convection-diffusion-reaction equations[J]. SIAM J. Numer. Anal., 2011, 49(3):1149-1176. [4] Knobloch P. A generalization of the local projection stabilization for convection-diffusion-reaction equations[J]. SIAM J. Numer. Anal., 2010, 48(2):659-680. [5] Hughes T J R, Brooks A N. A multidimensional upwind scheme with no crosswind diffusion[J]. Finite Element Methods for Convection Dominated Flows, 1979:19-35. [6] Burman E. Consistent SUPG-method for transient transport problems:stability and convergence[J]. Comput. Methods Appl. Mech. Eng., 2010, 199(17-20):1114-1123. [7] John V, Novo J. Error analysis of the SUPG finite element discretization of evolutionary convection-diffusion-reaction equations[J]. SIAM J. Numer. Anal., 2011, 49(3):1149-1176. [8] Becker R, Braack M. A finite element pressure gradient stabilization for the Stokes equations based on local projections[J]. Calcolo, 2001, 38(4):173-199. [9] Barrenechea G R, John V, Knobloch P. A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations[J]. ESAIM Math. Model. Num., 2013, 47(5):1335-1366. [10] Venkatesan J, Ganesan S. A three-field local projection stabilized formulation for computations of Oldroyd-B viscoelastic fluid flows[J]. J. Non-Newton. Fluid., 2017, 247:90-106. [11] Adams R A. Sobolev spaces[M]. New York:Academic Press, 1975. [12] Roos H G, Stynes M, Tobiska L. Robust numerical methods for singularly perturbed differential equations[M]. Springer Berlin Heidelberg, 2008. [13] Shen J, Tang T, Wang L L. Spectral Methods:Algorithms, Analysis and Applications[M]. Springer Publishing Company, Incorporated, 2011. [14] Zhao Z, Li H, Luo Z. A new space-time continuous Galerkin method with mesh modification for Sobolev equations[J]. J. Math. Anal. Appl., 2016, 440(1):86-105. [15] Crouzeix M, Thomee V. The stability in Lp and Wp1 of the L2 projection onto finite element function spaces[J]. Math. Comput., 1987, 48(178):521-532. |
[1] | 王金凤, 尹保利, 刘洋, 李宏. 四阶分数阶扩散波动方程的两网格混合元快速算法[J]. 计算数学, 2022, 44(4): 496-507. |
[2] | 李步扬. 曲率流的参数化有限元逼近[J]. 计算数学, 2022, 44(2): 145-162. |
[3] | 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505. |
[4] | 陈明卿, 谢小平. 随机平面线弹性问题的一类弱Galerkin方法[J]. 计算数学, 2021, 43(3): 279-300. |
[5] | 曾玉平, 翁智峰, 胡汉章. 简化摩擦接触问题的对称弱超内罚间断Galerkin方法的先验和后验误差估计[J]. 计算数学, 2021, 43(2): 162-176. |
[6] | 房明娟, 阳莺, 唐鸣. 稳态Poisson-Nernst-Planck方程的残量型后验误差估计[J]. 计算数学, 2021, 43(1): 17-32. |
[7] | 王然, 张怀, 康彤. 求解带有非线性边界条件的涡流方程的A-φ解耦有限元格式[J]. 计算数学, 2021, 43(1): 33-55. |
[8] | 唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486. |
[9] | 关宏波, 洪亚鹏. 抛物型界面问题的变网格有限元方法[J]. 计算数学, 2020, 42(2): 196-206. |
[10] | 何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 计算数学, 2020, 42(1): 101-116. |
[11] | 贾仲孝, 孙晓琳. 计算矩阵函数双线性形式的Krylov子空间算法的误差分析[J]. 计算数学, 2020, 42(1): 117-130. |
[12] | 武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 计算数学, 2018, 40(2): 191-213. |
[13] | 葛志昊, 吴慧丽. 体积约束的非局部扩散问题的后验误差分析[J]. 计算数学, 2018, 40(1): 107-116. |
[14] | 程强, 熊向团. 时间分数次扩散方程反演源项问题的迭代正则化方法[J]. 计算数学, 2017, 39(3): 295-308. |
[15] | 李宏, 杜春瑶, 赵智慧. 反应扩散方程的连续时空有限元方法[J]. 计算数学, 2017, 39(2): 167-178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||