• 论文 •    下一篇

双曲型守恒律方程的熵稳定格式的一些讨论

汤华中   

  1. 北京大学数学科学学院, 北京 100871
  • 收稿日期:2021-04-08 出版日期:2021-11-14 发布日期:2021-11-12
  • 基金资助:
    本工作部分得到了国家重点研发计划资助(2020YFA0712000),国家自然科学基金(12171227),和中德合作研究小组项目(GZ1465)的资助.

汤华中. 双曲型守恒律方程的熵稳定格式的一些讨论[J]. 计算数学, 2021, 43(4): 413-425.

Tang Huazhong. SOME DISCUSSIONS ON ENTROPY STABLE SCHEMES FOR SCALAR HYPERBOLIC CONSERVATION LAWS[J]. Mathematica Numerica Sinica, 2021, 43(4): 413-425.

SOME DISCUSSIONS ON ENTROPY STABLE SCHEMES FOR SCALAR HYPERBOLIC CONSERVATION LAWS

Tang Huazhong   

  1. School of Mathematical Sciences, Peking University, Beijing 100871, China
  • Received:2021-04-08 Online:2021-11-14 Published:2021-11-12
本文讨论双曲型守恒律方程的熵稳定格式.对于给定的熵对,格式所满足的熵条件中的数值熵通量是不唯一的.Tadmor的充分条件可以唯一地确定标量方程的熵守恒通量,但不能唯一确定方程组的熵守恒通量,却可以给出方程组的空间一阶精度的熵守恒格式.也讨论了在熵守恒通量上添加数值粘性得到的显式熵稳定格式需要满足的条件及常见的时间离散对熵守恒和熵稳定的影响.
This paper studies the entropy stable schemes for hyperbolic conservation laws. The numerical entropy flux is not unique in the entropy condition for the given entropy pair. According to Tadmor's sufficient condition, the entropy conservative flux for the scalar equation can be uniquely determined, but the entropy conservative flux for the system can not be uniquely given. For the system, the entropy conservative schemes of spatial first order accuracy can be given. The sufficient condition for numerical viscosity and the ratio of time and space stepsizes of the explicit entropy stable schemes for the scalar equation and the influence of some time discretizations on the entropy conservation and entropy stability are also discussed.

MR(2010)主题分类: 

()
[1] Crandall M G and Majda A. Monotone difference approximations for scalar conservation laws[J]. Math. Comput., 1980, 34:1-21.
[2] Duan J M and Tang H Z. High-order accurate entropy stable finite difference schemes for the shallow water magnetohydrodynamics[J]. J. Comput. Phys., 2021, 431:110136.
[3] Duan J M and Tang H Z. Entropy stable adaptive moving mesh schemes for 2D and 3D special relativistic hydrodynamics[J]. J. Comput. Phys., 2021, 426:109949.
[4] Duan J M and Tang H Z. High-order accurate entropy stable nodal discontinuous Galerkin schemes for the ideal special relativistic magnetohydrodynamics[J]. J. Comput. Phys., 2020, 421:109731.
[5] Duan J M and Tang H Z. High-order accurate entropy stable finite difference schemes for one- and two-dimensional special relativistic hydrodynamics[J]. Adv. Appl. Math. Mech., 2020, 12:1-29.
[6] Fjordholm U S, Mishra S and Tadmor E. Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws[J]. SIAM J. Numer. Anal., 2012, 50:544-573.
[7] Harten A, Hyman J M, Lax P D. On finite difference approximations and entropy conditions for shocks[J]. Comm. Pure Appl. Math., 1976, 29:297-322.
[8] Kruzhkov N. First order quasi-linear equations in several independent variables[J]. Math. USSR Sb., 10(1970), 217-243.
[9] LeFloch P G, Mercier J M and Rohde C. Fully discrete, entropy conservative schemes of arbitrary order[J]. SIAM J. Numer. Anal., 2002, 40:1968-1992.
[10] Oleinik O A. Discontinuous solutions of nonlinear differential equations[J]. Uspekhi Mat. Nauk, 1957, 12:3-73; Amer. Math. Soc. Transl. Ser., 2(26):95-172.
[11] Osher S. Riemann solvers, the entropy condition, and difference approximations[J]. SIAM J. Numer. Anal., 1984, 21:217-235.
[12] Tadmor E. The numerical viscosity of entropy stable schemes for systems of conservation laws. I[J]. Math. Comput., 1987, 49:91-103.
[13] Tadmor E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time dependent problems[J]. Acta Numerica, 2003, 12:451-512.
[14] Yang Z G, Lin L L and Dong S C. A family of second-order energy-stable schemes for Cahn-Hilliard type equations[J]. J. Comput. Phys., 2019, 383:24-54.
[1] 唐玲艳, 郭嘉, 宋松和. 求解带刚性源项标量双曲型守恒律方程的保有界WCNS格式[J]. 计算数学, 2021, 43(2): 241-252.
[2] 唐玲艳, 郭云瑞, 宋松和. 非结构网格上一类满足局部极值原理的三阶精度有限体积方法[J]. 计算数学, 2017, 39(3): 309-320.
[3] 汤华中. 一个刚性守恒律方程组的全隐式差分方法[J]. 计算数学, 2001, 23(2): 129-138.
阅读次数
全文


摘要