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Abstract When A ∈ B(H) and B ∈ B(K) are given, we denote by MC an operator acting on the

Hilbert space H ⊕K of the form MC =
�

A C
0 B

�
. In this paper, first we give the necessary and sufficient

condition for MC to be an upper semi-Fredholm (lower semi-Fredholm, or Fredholm) operator for

some C ∈ B(K, H). In addition, let σSF+(A) = {λ ∈ C : A − λI is not an upper semi-Fredholm

operator} be the upper semi-Fredholm spectrum of A ∈ B(H) and let σSF− (A) = {λ ∈ C : A − λI is

not a lower semi-Fredholm operator} be the lower semi-Fredholm spectrum of A. We show that the

passage from σSF+(A) ∪ σSF+(B) to σSF+(MC) is accomplished by removing certain open subsets of

σSF−(A) ∩ σSF+(B) from the former, that is, there is an equality

σSF+(A) ∪ σSF+(B) = σSF+(MC) ∪ G ,

where G is the union of certain of the holes in σSF+(MC) which happen to be subsets of σSF− (A) ∩
σSF+(B). Weyl’s theorem and Browder’s theorem are liable to fail for 2× 2 operator matrices. In this

paper, we also explore how Weyl’s theorem, Browder’s theorem, a-Weyl’s theorem and a-Browder’s

theorem survive for 2 × 2 upper triangular operator matrices on the Hilbert space.
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1 Introduction
The study of upper triangular operator matrices arises naturally from the following fact: If A
is a Hilbert space operator and M is an invariant subspace for A, then A has the following 2×2
upper triangular operator matrix representation:

A =

(
∗ ∗
0 ∗

)
: M ⊕ M⊥ −→ M ⊕ M⊥,

and one way to study operators is to see them as entries of simpler operators. The upper
triangular operator matrices have been studied by many authors (such as [1–5], etc.). This
paper is concerned with the semi-Fredholm spectrum and essential spectrum of 2 × 2 upper
triangular operator matrices. We also study Weyl’s theorem and a-Weyl’s theorem for 2 × 2
upper triangular operator matrices.

Throughout this paper, let H and K be infinite-dimensional separable Hilbert spaces, let
B(H, K) denote the set of bounded linear operators from H to K, with B(H, H) abbreviated
to B(H). If A ∈ B(H), write N(A) for the null space of A and R(A) for the range of A.
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For A ∈ B(H), if R(A) is closed and dim N(A) < ∞, we call A an upper semi-Fredholm
operator and if dimH/R(A) < ∞, then A is called a lower semi-Fredholm operator. Let
Φ+(H) ( Φ−(H)) denote the set of all upper (lower) semi-Fredholm operators on H. A is
called a Fredholm operator if dim N(A) < ∞ and dimH/R(A) < ∞. If A is a semi-Fredholm
operator, letting n(A) = dimN(A) and d(A) = dimH/R(A), then we define the index of A
by ind(A) = n(A) − d(A). An operator A is called Weyl if it is a Fredholm operator of index
zero, and is called Browder if it is Fredholm “of finite ascent and descent”. We write α(A)
for the ascent of A ∈ B(H). Let A∗ denote the conjugate of A ∈ B(H). If A ∈ B(H), write
σ(A) for the spectrum of A; σa(A) for the approximate point spectrum of A; π00(A) for the
isolated points of σ(A) which are eigenvalues of finite multiplicity; πa

00(A) for the isolated points
of σa(A) which are eigenvalues of finite multiplicity. Let ρa(A) = C\σa(A). The essential
spectrum σe(A), the Weyl spectrum σw(A), the Browder spectrum σb(A) of A are defined
by: σe(A) = {λ ∈ C : A − λI is not Fredholm}; σw(A) = {λ ∈ C : A − λI is not Weyl};
σb(A) = {λ ∈ C : A − λI is not Browder}.

For any A ∈ B(H), let
σSF+(A) = {λ ∈ C : A − λI is not in Φ+(H)},
σSF−(A) = {λ ∈ C : A − λI is not in Φ−(H)}.

We call σSF+(A) and σSF−(A) upper semi-Fredholm spectrum and lower semi-Fredholm spec-
trum of A, respectively.

Recall that an operator A ∈ B(H) is said to be bounded below if there is a k > 0 for which
‖x‖ ≤ k ‖Ax‖ for each x ∈ H. A is bounded below if and only if 0 ∈ ρa(A). If G is a compact
subset of C, we write int G for the interior points of G ; iso G for the isolated points of G ; ∂ G
for the topological boundary of G . When A ∈ B(H) and B ∈ B(K) are given, we denote by
MC an operator acting on H ⊕ K of the form

MC =

(
A C

0 B

)
,

where C ∈ B(K, H).
In [1] and [2], the authors gave the necessary and sufficient condition for MC to be invertible

for some C ∈ B(K, H) and characterized the spectrum of MC . In Section 2 in this paper, we
give the necessary and sufficient condition for MC to be an upper semi-Fredholm operator
(lower semi-Fredholm or Fredholm) operator for some C ∈ B(K, H) and characterize the semi-
Fredholm spectrum and essential spectrum of MC .

In Section 3, we show the passage from σSF+(A) ∪ σSF+(B) (σe(A) ∪ σe(B)) to σSF+(MC)
(σe(MC)) can be described as follows:

σSF+(A) ∪ σSF+(B) = σSF+(MC) ∪ G , σe(A) ∪ σe(B) = σe(MC) ∪ G ,

where G lies in certain holes in σSF+(MC) (σe(MC)), which happen to be subsets of σSF−(A)∩
σSF+(B).

In Section 4, we explore how Weyl’s theorem, Browder’s theorem, a-Weyl’s theorem and
a-Browder’s theorem survive for 2× 2 upper triangular operator matrices MC . Weyl’s theorem
for operator matrices was studied in [5]. We have an example to show that our result is not
compatible with the main theorem in [5].

2 Semi-Fredholm Spectrum for Operator Matrices

Lemma 2.1 An operator A ∈ B(H) is upper semi-Fredholm if and only if A∗A is Fredholm.

Proof It is obvious.
In this section, our main results are:

Theorem 2.2 A 2× 2 operator matrix MC =
(

A C
0 B

)
is an upper semi-Fredholm operator for
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some C ∈ B(K, H) if and only if A is an upper semi-Fredholm operator and :{
n(B) < ∞ or n(B) = d(A) = ∞, if R(B) is closed;
d(A) = ∞. if R(B) is not closed.

Proof We first claim that if A ∈ Φ+(H) and R(B) is closed, then
n(B) < ∞ or n(B) = d(A) = ∞ ⇐⇒ MC ∈ Φ+(H ⊕ K) for some C ∈ B(K, H).

If R(A) and R(B) are closed, then MC as an operator from H ⊕ K = (N(A) ⊕ R(A∗)) ⊕
(N(B)⊕R(B∗)) = N(A)⊕R(A∗)⊕N(B)⊕R(B∗) into H ⊕K = (N(A∗)⊕R(A))⊕ (N(B∗)⊕
R(B)) = N(A∗) ⊕ R(A) ⊕ N(B∗) ⊕ R(B) has the following operator matrix:

MC =

(
A C

0 B

)
=

⎛
⎜⎜⎜⎜⎝

0 0 C11 C12

0 A1 C21 C22

0 0 0 0

0 0 0 B1

⎞
⎟⎟⎟⎟⎠ .

Clearly, A1 and B1 are invertible. So MC is upper semi-Fredholm if and only if the operator

M ′
C =

⎛
⎜⎜⎜⎜⎝

0 0 C11 0
0 A1 0 0

0 0 0 0
0 0 0 B1

⎞
⎟⎟⎟⎟⎠

is upper semi-Fredholm. By Lemma 2.1, M ′
C is upper semi-Fredholm if and only if M ′∗

C M ′
C is

Fredholm, but

M ′∗
C M ′

C =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 A∗
1 0 0

C∗
11 0 0 0
0 0 0 B∗

1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0 0 C11 0

0 A1 0 0
0 0 0 0
0 0 0 B1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 A∗
1A1 0 0

0 0 C∗
11C11 0

0 0 0 B∗
1B1

⎞
⎟⎟⎟⎟⎠

is an operator on H ⊕ K = N(A)⊕ R(A∗) ⊕ N(B) ⊕ R(B∗). Noticing the fact above, the first
part of Theorem 2.2 is easy verified. In fact, to end the proof, what remains is to check under
which conditions the operators A∗

1A1, C∗
11C11 and B∗

1B1 are Fredholm.
If MC ∈ Φ+(H ⊕ K) for some C ∈ B(K, H) and R(B) is closed, then A ∈ Φ+(H) and

C11 ∈ Φ+(N(B), N(A∗)). Without loss of generality, we suppose that n(B) = ∞, then we
need to prove that d(A) = ∞. If not, then n(A∗) < ∞. It induces that C11N(B) is finite-
dimensional. Then N(C11) must contain an orthonormal sequence {yn}∞n=1 in N(B). It is in
contradiction to the fact that n(C11) < ∞.

Conversely, suppose that n(B) < ∞ or n(B) = d(A) = ∞. If n(B) < ∞, then B ∈ Φ+(K).
By MC =

(
I 0
0 B

)(
I C
0 I

)(
A 0
0 I

)
, we know that MC ∈ Φ+(H ⊕ K) for every C ∈ B(K, H). In the

following, suppose n(B) = d(A) = ∞. Since N(B) and R(A)⊥ are separable, there exists a
linear operator C11 with domain N(B) and range R(A)⊥ = N(A∗) such that ‖C11y‖ = ‖y‖ for
every y ∈ N(B). Define an operator C : K −→ H by

C =

(
C11 0
0 0

)
:

(
N(B)
R(B∗)

)
−→

(
N(A∗)
R(A)

)
. (1)

Clearly, C∗
11C11 is Fredholm and hence MC is Fredholm. By the way, in this case, we can show

that n(MC) = n(A) < ∞.
Next we claim that if A ∈ Φ+(H) and R(B) is not closed, then

d(A) = ∞ ⇐⇒ MC ∈ Φ+(H ⊕ K) for some C ∈ B(K, H).

If R(A) is closed and R(B) is not closed, we first attend the following fact.
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If R(B) is not closed, B = UP is the polar decomposition and P =
∫ ‖B‖
0

λdEλ is the
spectral representation of P . R(B) is not closed implies that dimE([0, δ))K is infinite for each
small enough δ > 0. In this case, there exists a slight discrepancy for the space decomposition.
MC as an operator from H ⊕ K = N(A) ⊕ R(A∗) ⊕ E([0, δ))K ⊕ E([δ, ‖B‖])K into H ⊕ K =
N(A∗) ⊕ R(A) ⊕ (N(B) ⊕ UE([0, δ))K) ⊕ UE([δ, ‖B‖])K has the following operator matrix:

MC =

(
A C

0 B

)
=

⎛
⎜⎜⎜⎜⎝

0 0 C11 C12

0 A1 C21 C22

0 0 B11 0

0 0 0 B22

⎞
⎟⎟⎟⎟⎠ .

It is easy to see that A1 and B22 are invertible, hence MC is upper semi-Fredholm if and only
if the operator

M ′
C =

⎛
⎜⎜⎜⎜⎝

0 0 C11 0

0 A1 0 0
0 0 B11 0

0 0 0 B22

⎞
⎟⎟⎟⎟⎠

is upper semi-Fredholm. By Lemma 2.1, M ′
C is upper semi-Fredholm if and only if M ′∗

C M ′
C is

Fredholm, but

M ′∗
C M ′

C =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

0 A∗
1 0 0

C∗
11 0 B∗

11 0

0 0 0 B∗
22

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

0 0 C11 0

0 A1 0 0
0 0 B11 0

0 0 0 B22

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

0 0 0 0
0 A∗

1A1 0 0
0 0 C∗

11C11 + B∗
11B11 0

0 0 0 B∗
22B22

⎞
⎟⎟⎟⎟⎠

is an operator on H ⊕ K = N(A) ⊕ R(A∗) ⊕ E([0, δ))K ⊕ E([δ, ‖B‖])K. So, to complete the
proof, it is enough to verify under which conditions the operators A∗

1A1, C∗
11C11 + B∗

11B11 and
B∗

22B22 are Fredholm.
If MC ∈ Φ+(H ⊕ K) for some C ∈ B(K, H) and R(B) is not closed, then A ∈ Φ+(H) and

C∗
11C11 + B∗

11B11 is Fredholm. We need to prove that d(A) = ∞. If not, then N(A∗) is finite-
dimensional, which means that C11 is a finite rank operator. Therefore C∗

11C11 is compact. By
the perturbation theory of the Fredholm operator, we get that B∗

11B11 is Fredholm. Then B11

is upper semi-Fredholm, it induces that B is upper semi-Fredholm, which is in contradiction to
the fact that R(B) is not closed. Now we have proved that d(A) = ∞.

Conversely, suppose that R(B) is not closed and d(A) = ∞. By dim R(A)⊥ = ∞, there
exists an isometrically isomorphic linear operator T : K −→ R(A)⊥ = N(A∗). Define an
operator C : K −→ H by

C =

(
T

0

)
: K −→

(
R(A)⊥

R(A)

)
.

Then MC ∈ Φ+(H⊕K). In fact, let
(

u
v

) ∈ N(MC). Then Au+Cv = 0 and hence Au = −Cv ∈
R(A)∩R(A)⊥. Thus Au = Cv = 0. C is injective, then v = 0. Therefore N(MC) ⊆ N(A)⊕{0}.
It follows that n(MC) ≤ n(A) < ∞ and hence n(MC) = n(A). Suppose MC

(
un
vn

) −→ (
u0
v0

)
.

Then Aun + Cvn −→ u0 and Bvn −→ v0. Thus {Aun} and {Cvn} are Cauchy sequences.
It follows that vn is a Cauchy sequence. Let vn −→ y0 and Aun −→ Ax0. Then

(
u0
v0

)
=
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MC

( x0
y0

) ∈ R(MC), which means that R(MC) is closed. Then MC ∈ Φ+(H ⊕K). The proof is
completed.

A similar idea can be used to complete the proof of the following theorem:
Theorem 2.3 A 2 × 2 operator matrix MC =

(
A C
0 B

)
is a lower semi-Fredholm operator for

some C ∈ B(K, H) if and only if B is a lower semi-Fredholm operator and :{
d(A) < ∞ or d(A) = n(B) = ∞, if R(A) is closed;
n(B) = ∞, if R(A) is not closed.

From Theorems 2.2 and 2.3, we have
Theorem 2.4 A 2 × 2 operator matrix MC =

(
A C
0 B

)
is a Fredholm operator for some

C ∈ B(K, H) if and only if A is an upper semi-Fredholm operator, B is a lower semi-Fredholm
operator and one of the following cases exists :

(a) d(A) < ∞ and n(B) < ∞ ; (b) d(A) = n(B) = ∞.
Proof Suppose that there exists C ∈ B(K, H) such that MC is Fredholm. Then A ∈ Φ+(H),
B ∈ Φ−(K) and A is Fredholm ⇐⇒ B is Fredholm and therefore Case (a) or Case (b) exists.

For the converse, suppose A ∈ Φ+(H) and B ∈ Φ−(K).
(I) Suppose that d(A) < ∞ and n(B) < ∞. Then A and B are Fredholm, hence for each

C ∈ B(K, H), MC is Fredholm.
(II) Suppose that d(A) = n(B) = ∞. Define C ∈ B(K, H) as (1) in Theorem 2.2. Then

MC is an upper semi-Fredholm operator. In order to prove that MC is Fredholm, we need
to prove that n(M∗

C) < ∞. Let
(

u
v

) ∈ N(M∗
C). Then A∗u = 0 and C∗u + B∗v = 0. Since

u ∈ N(A∗) = R(A)⊥ and C∗ =
(

C∗
11 0
0 0

)
, by the definition of C11, it follows that C∗u = C∗

11u ∈
N(B) = R(B∗)⊥. Then C∗

11u = C∗u = −B∗v = 0. Thus u = 0 and v ∈ N(B∗). Now we get
that N(M∗

C) ⊆ {0} ⊕ N(B∗), therefore n(M∗
C) ≤ n(B∗) = d(B) < ∞. Then MC is Fredholm.

From the proof of Theorem 2.4, we find that:
Corollary 2.5 A 2 × 2 operator matrix MC =

(
A C
0 B

)
is invertible for some C ∈ B(K, H) if

and only if A is bounded below, B is surjective, and d(A) = n(B).
Corollary 2.6 A 2 × 2 operator matrix MC =

(
A C
0 B

)
is an upper semi-Fredholm operator

for some C ∈ B(K, H) and n(MC) = n(A) if and only if A is an upper semi-Fredholm operator
and : {

n(B) ≤ d(A), if R(B) is closed;
d(A) = ∞, if R(B) is not closed.

Proof By the proof of Theorem 2.2, we need to prove only that if A ∈ Φ+(H) and R(B) is
closed and if ∃ C ∈ B(K, H) such that MC ∈ Φ+(H⊕K) and n(MC) = n(A), then n(B) ≤ d(A).
If d(A) = ∞, the result is clearly true. Then, we suppose that d(A) = m < ∞, then n(B) < ∞.
Suppose n(B) = n and let {e1, e2, . . . , en} be an orthonormal basis for N(B). If n > m, let
Cei = αi +βi, where αi ∈ R(A) and βi ∈ R(A)⊥. Then {Cei −αi} (i = 1, 2, . . . , n) are linearly
dependent. There exists {ai} ⊆ C such that aj �= 0 for some j and

∑n
i=1 aiCei =

∑n
i=1 aiαi ∈

CN(B) ∩ R(A). Since N(MC) = N(A)⊕ {0}, it follows that CN(B) ∩ R(A) = {0}. Therefore∑n
i=1 aiCei = 0. We have that C|N(B) is injective. To see this, if not, there exists y ∈ N(B)

such that y �= 0 and Cy = 0. Then
(

0
y

) ∈ N(MC). It is in contradiction to the fact that
N(MC) = N(A) ⊕ {0}. Therefore

∑n
i=1 aiei = 0. It is a contradiction. Then n(B) ≤ d(A).

Corollary 2.7 A 2×2 operator matrix MC =
(

A C
0 B

)
is bounded below for some C ∈ B(K, H)

if and only if A is bounded below and :{
n(B) ≤ d(A), if R(B) is closed;
d(A) = ∞, if R(B) is not closed.

Corollary 2.8 An 2 × 2 operator matrix MC =
(

A C
0 B

)
is a lower semi-Fredholm operator

for some C ∈ B(K, H) and d(MC) = d(B) if and only if B is a lower semi-Fredholm operator
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and : {
d(A) ≤ n(B), if R(A) is closed;
n(B) = ∞, if R(A) is not closed.

The following corollary is immediate from Theorems 2.2 and 2.3:
Corollary 2.9 For a given pair (A, B) of operators, we have⋂
C∈B(K,H)

σSF+(MC) = σSF+(A)
⋃

{λ ∈ C : R(B − λI) is not closed and d(A − λI) < ∞}
⋃

{λ ∈ C : R(B − λI) is closed and n(B − λI) = ∞, d(A − λI) < ∞}
and⋂
C∈B(K,H)

σSF−(MC) = σSF−(B)
⋃

{λ ∈ C : R(A − λI) is not closed and n(B − λI) < ∞}
⋃

{λ ∈ C : R(A − λI) is closed and d(A − λI) = ∞, n(B − λI) < ∞}.

3 The Passage from σSF+(A) ∪ σSF+(B) (σe(A) ∪ σe(B)) to σSF+(MC) (σe(MC))

In [4], it was shown that for every C ∈ B(K, H), the passage from σw(A) ∪ σw(B) to σw(MC)
is accomplished by removing certain open subsets of σw(A) ∩ σw(B) from the former, that is,
there is the equality

η(σw(A)
⋃

σw(B)) = η(σw(MC)),

where η(·) denotes the “polynomially-convex hull”. More precisely,

σw(A)
⋃

σw(B) = σw(MC)
⋃

G ,

where G is the union of certain of the holes in σw(MC) which happen to be subsets of σw(A)∩
σw(B). The passage from σSF+(A)∪σSF+(B) (σSF−(A)∪σSF−(B)) to σSF+(MC) (σSF−(MC)) is
more delicate.

Theorem 3.1 For a given pair (A, B) of operators, we have that for every C ∈ B(K, H),
η(σSF+(A) ∪ σSF+(B)) = η(σSF+(MC)),

where η(·) denotes the “polynomially-convex hull”. More precisely,
σSF+(A) ∪ σSF+(B) = σSF+(MC) ∪ G ,

where G lies in certain holes in σSF+(MC), which happen to be subsets of σSF−(A)∩σSF+(B).
Proof First we claim that, for every T ∈ B(H),

η(σSF+(T )) = η(σw(T )). (2)
Since σSF+(T ) ⊆ σw(T ), we need to prove ∂ σw(T ) ⊆ ∂ σSF+(T ). But since int σSF+(T ) ⊆
int σw(T ), it suffices to show that ∂σw(T ) ⊆ σSF+(T ). Suppose λ0 ∈ ∂σw(T )\σSF+(T ). By
the perturbation theory of upper semi-Fredholm, there exists ε > 0 such that T − λI ∈ Φ+(H)
and ind(T − λI) = ind(T − λ0I) if 0 < |λ − λ0| < ε. Since λ0 ∈ ∂σw(T ), there exists λ1 such
that 0 < |λ1 − λ0| < ε and T − λ1I is Weyl. Then T − λ0I is Weyl. It is in contradiction to
the fact that λ0 ∈ σw(T ) and hence ∂ σw(T ) ⊆ σSF+(T ). This proves (2). Similarly, for every
T1 ∈ B(H) and T2 ∈ B(K), η(σSF+(T1) ∪ σSF+(T2)) = η(σw(T1) ∪ σw(T2)). Then for each
C ∈ B(K, H),

η(σSF+(MC)) = η(σw(MC)) = η(σw(A) ∪ σw(B)) = η(σSF+(A) ∪ σSF+(B)). (3)
Now suppose λ ∈ (σSF+(A)∪σSF+(B))\σSF+(MC). Then λ ∈ σSF+(B)\σSF+(A). By Theorem
2.2, if R(B − λI) is closed, then n(B − λI) = ∞ and hence d(A − λI) = ∞. If instead
R(B − λI) is not closed, then using Theorem 2.2 again, d(A − λI) = ∞. Therefore λ ∈
σSF−(A) ∩ σSF+(B). (3) says that the passage from σSF+(MC) to σSF+(A) ∪ σSF+(B) is
the filling in certain of the holes in σSF+(MC). But since σSF+(A) ∪ σSF+(B)\σSF+(MC) is
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contained in σSF−(A)∩ σSF+(B), it follows that the filling in certain of the holes in σSF+(MC)
should occur in σSF−(A) ∩ σSF+(B). The proof is completed.

For lower semi-Fredholm spectrum and essential spectrum, we also have:
Theorem 3.2 For a given pair (A, B) of operators, we have that for every C ∈ B(K, H),

η(σSF−(A) ∪ σSF−(B)) = η(σSF−(MC)),
where η(·) denotes the “polynomially-convex hull”. More precisely,

σSF−(A) ∪ σSF−(B) = σSF−(MC) ∪ G ,

where G lies in certain holes in σSF−(MC), which happen to be subsets of σSF−(A)∩ σSF+(B).
Theorem 3.3 For a given pair (A, B) of operators, we have that for every C ∈ B(K, H),

η(σe(A) ∪ σe(B)) = η(σe(MC)),
where η(·) denotes the “polynomially-convex hull”. More precisely,

σe(A) ∪ σe(B) = σe(MC) ∪ G ,

where G lies in certain holes in σe(MC), which happen to be subsets of σSF−(A) ∩ σSF+(B).
Corollary 3.4 If σSF−(A) ∩ σSF+(B) has no interior points, then for every C ∈ B(K, H),

σSF+(A) ∪ σSF+(B) = σSF+(MC); σSF−(A) ∪ σSF−(B) = σSF−(MC);
and σe(A) ∪ σe(B) = σe(MC).

4 Weyl’s Theorem for 2 × 2 Upper Triangular Operator Matrices

Weyl [6] examined the spectra of all compact perturbations A + K of a Hermitian operator A
and discovered that λ ∈ σ(A + K) for every compact operator K if and only if λ is not an
isolated eigenvalue of finite multiplicity in σ(A). Today this result is known as Weyl’s theorem.
Similar to Weyl’s theorem, there is a-Weyl’s theorem ([7, 8]).

It is well known that Weyl’s theorem holds for A ∈ B(H) if
σ(A)\σw(A) = π00(A);

and Browder’s theorem holds for A if
σw(A) = σb(A).

Clearly, Weyl’s theorem implies Browder’s theorem.
Let Φ−

+(H) be the class of all A ∈ Φ+(H) with ind(A) ≤ 0, and for any A ∈ B(H), let
σea(A) = {λ ∈ C : A − λI is not in Φ−

+(H)}
and

σab(A) = {λ ∈ C : A − λI is not an upper semi-Fredholm operator with finite ascent}.
We call σea(A) the essential approximate point spectrum of A and σab(A) the Browder essential
approximate point spectrum of A.

Similarly, we say that a-Weyl’s theorem holds for A if there is equality
σa(A)\σea(A) = πa

00(A);
and that a-Browder’s theorem holds for A if there is equality

σea(A) = σab(A).
It is known ([7, 8]) that if A ∈ B(H), then we have

a-Weyl′s theorem =⇒ a-Browder′s theorem and Weyl′s theorem
=⇒ Browder′s theorem.

Weyl’s theorem may or may not hold for a direct sum of operators for which Weyl’s theorem
holds. Thus Weyl’s theorem may fail for upper triangular operator matrices, so does a-Weyl’s
theorem. Weyl’s theorem for upper triangular operator matrices is more delicate in comparison
with the diagonal matrices. In this section, we consider this question: If Weyl’s (a-Weyl’s)
theorem holds for

(
A 0
0 B

)
, when does it hold for

(
A C
0 B

)
? We begin with:
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Lemma 4.1 For a given pair (A, B) of operators, if both A and B have finite ascents, then
for every C ∈ B(K, H), MC has finite ascent.

Proof Suppose α(A) = p and α(B) = q, let n = max{p, q}. For every C ∈ B(K, H), if we have
N(M2n+1

C ) = N(M2n
C ), we get the result. So we need to prove only N(M2n+1

C ) ⊆ N(M2n
C ).

If u0 ∈ N(M2n+1
C ), supposing u0 = (x0, y0), then

0 = M2n+1
C (x0, y0)

= (A2n+1x0 + A2nCy0 + A2n−1CBy0 + · · · + AnCBny0 + · · · + CB2ny0, B2n+1y0),
then B2n+1y0 = 0 and

A2n+1x0 + A2nCy0 + A2n−1CBy0 + · · · + AnCBny0 + · · · + CB2ny0 = 0.

So y0 ∈ N(B2n+1) = N(Bn), thus
A2n+1x0 + A2nCy0 + A2n−1CBy0 + · · · + An+1CBn−1y0 = 0,

that is,
An+1[Anx0 + An−1Cyo + An−2CBy0 + · · · + CBn−1y0] = 0,

and hence
Anx0 + An−1Cy0 + An−2CBy0 + · · · + CBn−1y0 ∈ N(An+1) = N(An).

Then
A2nx0 + A2n−1Cy0 + A2n−2CBy0 + · · · + AnCBn−1y0 = 0.

Now we get that
(A2nx0 + A2n−1Cy0 + · · · + AnCBn−1y0 + An−1CBny0 + · · · + CB2n−1y0, B2ny0) = 0,

that is, M2n
C u0 = 0 and hence u0 ∈ N(M2n

C ). So N(M2n+1
C ) = N(M2n

C ), and hence MC has
finite ascent.

Theorem 4.2 If σSF−(A) ∩ σSF+(B) has no interior points, then for every C ∈ B(K, H) :
(a) Browder’s theorem holds for

(
A 0
0 B

)
=⇒ Browder’s theorem holds for

(
A C
0 B

)
;

(b) a-Browder’s theorem holds for
(

A 0
0 B

)
=⇒ a-Browder’s theorem holds for

(
A C
0 B

)
.

Proof (a) We need to prove that σw(MC) = σb(MC) for every C ∈ B(K, H). Since σw(MC) ⊆
σb(MC), we need to prove only σb(MC) ⊆ σw(MC). Suppose that MC − λ0I is Weyl. Then
A − λ0I ∈ Φ+(H) and B − λ0I ∈ Φ−(K) and A − λ0I is Fredholm ⇐⇒ B − λ0I is Fredholm.
Corollary 3.4 asserts that σSF+(A) ∪ σSF+(B) = σSF+(MC). Since λ0 is not in σSF+(MC), it
follows that λ0 is not in σSF+(B). Then B − λ0I is Fredholm and hence A − λ0I is Fredholm.
Thus by ind

((
A 0
0 B

)− λ0I
)

= ind(MC − λ0I) = 0, we get that
(

A 0
0 B

)− λ0I is Weyl. Browder’s
theorem holds for

(
A 0
0 B

)
, then α(A−λ0I) < ∞ and α(B−λ0I) < ∞. Therefore α(MC−λ0I) <

∞ (Lemma 4.1). [9, Theorem 4.5] asserts that MC −λ0I is Browder. Then Browder’s theorem
holds for MC for every C ∈ B(K, H).

(b) Since σea(MC) ⊆ σab(MC), we need to prove only that σab(MC) ⊆ σea(MC). Suppose
MC − λ0I ∈ Φ−

+(H ⊕ K). Then A − λ0I ∈ Φ+(H) and λ0 is not in σSF+(MC) = σSF+(A) ∪
σSF+(B). Therefore

(
A 0
0 B

)− λ0I ∈ Φ+(H ⊕ K) and ind
((

A 0
0 B

)− λ0I
)

= ind(MC − λ0I) ≤ 0,
which means that λ0 is not in σea

(
A 0
0 B

)
. a-Browder’s theorem holds for

(
A 0
0 B

)
, then α(A −

λ0I) < ∞ and α(B − λ0I) < ∞, hence α(MC − λ0I) < ∞ (Lemma 4.1). It is shown that λ0

is not in σab(MC). Then σea(MC) = σab(MC) for every C ∈ B(K, H), and hence a-Browder’s
theorem holds for MC .

A ∈ B(H) is called approximate-isoloid (abbrev. a-isoloid) if every isolated point of σa(A)
is an eigenvalue of A, and A is called isoloid if every isolated point of σ(A) is an eigenvalue
of A.

Remark 4.3 Theorem 4.2 may fail for “a-Weyl’s theorem” even with the additional assump-
tion that a-Weyl’s theorem holds for A and B and both A and B are a-isoloid. To see this, let
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A, B, C ∈ B(�2) be defined by
A(x1, x2, x3, . . .) = (0, x1, 0, x2, 0, x3, . . .),
B(x1, x2, x3, . . .) = (0, x2, 0, x4, 0, x6, . . .),

C(x1, x2, x3, . . .) =
(

0, 0, 0, 0,
1
3
x3, 0,

1
5
x5, . . .

)
.

Then
σa(A) = σea(A) = {λ ∈ C : |λ| = 1}, σSF−(A) = {λ ∈ C : |λ| ≤ 1}, πa

00(A) = ∅,
σa(B) = σea(B) = σSF+(B) = {0, 1}, πa

00(B) = ∅,
which says that a-Weyl’s theorem holds for A and B, both A and B are a-isoloid and σSF−(A)∩
σSF+(B) has no interior points. Also a straightforward calculation shows that

σa

(
A 0

0 B

)
=σea

(
A 0

0 B

)
=σa

(
A C

0 B

)
=σea

(
A C

0 B

)
={λ ∈ C : |λ| = 1} ∪ {0},

πa
00

(
A 0

0 B

)
=∅, πa

00

(
A C

0 B

)
={0}.

Then a-Weyl’s theorem holds for
(

A 0
0 B

)
, but fails for

(
A C
0 B

)
.

But for Weyl’s theorem, we have:
Theorem 4.4 If σSF−(A) ∩ σSF+(B) has no interior points and if A is an isoloid operator
for which Weyl’s theorem holds, then for every C ∈ B(K, H),

Weyl′s theorem holds for
(

A 0
0 B

)
=⇒ Weyl′s theorem holds for

(
A C
0 B

)
.

Proof Theorem 4.2 gives that σ(MC)\σw(MC) ⊆ π00(MC). For the reverse inclusion, suppose
that λ0 ∈ π00(MC). Then there exists ε > 0 such that MC − λI is invertible and hence
A − λI is bounded below and B − λI is surjective if 0 < |λ − λ0| < ε. Since σSF+(MC) =
σSF+(A) ∪ σSF+(B) and λ is not in σSF+(MC), it follows that B − λI is Fredholm and hence
A−λI is Fredholm. Then

(
A 0
0 B

)−λI is Fredholm with ind
((

A 0
0 B

)−λI
)

= ind(MC −λI) = 0,
that is,

(
A 0
0 B

) − λI is Weyl. Weyl’s theorem holds for
(

A 0
0 B

)
, then A − λI and B − λI are

Browder if 0 < |λ−λ0| < ε. Thus A−λI and B −λI are invertible because A−λI is bounded
below and B − λI is surjective. Now we have that λ0 ∈ iso σ

(
A 0
0 B

)
. The following proof is the

same as the proof in Theorem 2.4 in [5]:
Remark 4.5 Theorem 4.4 in this paper is not compatible with Theorem 2.4 in [5]. For
example:

(a) Let A, B ∈ B(�2) be defined by
A(x1, x2, x3, . . .) = (x2, x4, x6, . . .), B(x1, x2, x3, . . .) = (0, x1, 0, x2, 0, x3, . . .).

Then
σ(A) = σw(A) = σe(A) = {λ ∈ C : |λ| ≤ 1}, σSF−(A) = {λ ∈ C : |λ| = 1}, π00(A) = ∅,
σSF+(B) = {λ ∈ C : |λ| = 1}, σe(B) = {λ ∈ C : |λ| ≤ 1},

σ

(
A 0
0 B

)
= σw

(
A 0
0 B

)
= {λ ∈ C : |λ| ≤ 1}, π00

(
A 0
0 B

)
= ∅.

We have:
(I) σSF−(A) ∩ σSF+(B) has no interior points;
(II) Both SP (A) and SP (B) have pseudoholes;
(III) A is isoloid and Weyl’s theorem holds for A;
(IV) Weyl’s theorem holds for

(
A 0
0 B

)
.

Then using Theorem 4.4 in this paper, Weyl’s theorem holds for
(

A C
0 B

)
for every C ∈ B(�2).

But using Theorem 2.4 in [5], we don’t know whether Weyl’s theorem holds for
(

A C
0 B

)
for every

C ∈ B(�2).
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(b) Let T1, T2 ∈ B(�2) be defined by
T1(x1, x2, x3, . . .) = (0, x1, 0, x2, 0, x3, . . .), T2(x1, x2, x3, . . .) = (x2, x4, x6, . . .)

and let

A =

(
T1 0
0 T2

)
and B = T2.

Then
σ(A) = σw(A) = σe(A) = σSF+(A) = σSF−(A) = {λ ∈ C : |λ| ≤ 1}, π00(A) = ∅,

σ

(
A 0
0 B

)
= σw

(
A 0
0 B

)
= {λ ∈ C : |λ| ≤ 1}, π00

(
A 0
0 B

)
= ∅.

This means that
(I) σSF−(A) ∩ σSF+(B) = {λ ∈ C : |λ| ≤ 1} has interior points;
(II) SP (A) has no pseudoholes;
(III) A is isoloid and Weyl’s theorem holds for A;
(IV) Weyl’s theorem holds for

(
A 0
0 B

)
.

Then by Theorem 2.4 in [5], Weyl’s theorem holds for
(

A C
0 B

)
for every C ∈ B(K, H). But

using Theorem 4.4 in this paper, we don’t know whether Weyl’s theorem holds for MC .
In spite of Remark 4.3, similarly to the proof of Theorem 4.4, we have:

Theorem 4.6 Suppose that σSF−(A) has no interior points and σab(B) = σa(B). If A is an
a-isoloid operator for which a-Weyl’s theorem holds, then for every C ∈ B(K, H),

a-Weyl’s theorem holds for
(

A 0
0 B

)
=⇒ a-Weyl’s theorem holds for

(
A C
0 B

)
.
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