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Abstract When A € B(H) and B € B(K) are given, we denote by M¢c an operator acting on the
Hilbert space H & K of the form M¢c = (6‘ g) In this paper, first we give the necessary and sufficient
condition for M¢ to be an upper semi-Fredholm (lower semi-Fredholm, or Fredholm) operator for
some C' € B(K,H). In addition, let osr, (A) = {A € C: A — Al is not an upper semi-Fredholm
operator} be the upper semi-Fredholm spectrum of A € B(H) and let osr_ (A) ={A € C: A—Alis
not a lower semi-Fredholm operator} be the lower semi-Fredholm spectrum of A. We show that the
passage from OSF, (A) Uosr, (B) to osr, (Mc) is accomplished by removing certain open subsets of
osr_(A)Nosk, (B) from the former, that is, there is an equality

osr, (A)Uosr, (B) =osr, (Mc)UY,

where ¢ is the union of certain of the holes in osr, (Mc) which happen to be subsets of osp_(A) N
osr, (B). Weyl’s theorem and Browder’s theorem are liable to fail for 2 x 2 operator matrices. In this
paper, we also explore how Weyl’s theorem, Browder’s theorem, a-Weyl’s theorem and a-Browder’s
theorem survive for 2 x 2 upper triangular operator matrices on the Hilbert space.
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1 Introduction

The study of upper triangular operator matrices arises naturally from the following fact: If A
is a Hilbert space operator and M is an invariant subspace for A, then A has the following 2 x 2
upper triangular operator matrix representation:

x %
A= ( 0 ) . MoM* — Mo M,
*

and one way to study operators is to see them as entries of simpler operators. The upper
triangular operator matrices have been studied by many authors (such as [1-5], etc.). This
paper is concerned with the semi-Fredholm spectrum and essential spectrum of 2 x 2 upper
triangular operator matrices. We also study Weyl’s theorem and a-Weyl’s theorem for 2 x 2
upper triangular operator matrices.

Throughout this paper, let H and K be infinite-dimensional separable Hilbert spaces, let
B(H, K) denote the set of bounded linear operators from H to K, with B(H, H) abbreviated
to B(H). If A € B(H), write N(A) for the null space of A and R(A) for the range of A.
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For A € B(H), if R(A) is closed and dim N(A) < oo, we call A an upper semi-Fredholm
operator and if dim H/R(A) < oo, then A is called a lower semi-Fredholm operator. Let
O, (H) ( @_(H)) denote the set of all upper (lower) semi-Fredholm operators on H. A is
called a Fredholm operator if dim N(A) < oo and dim H/R(A) < oo. If A is a semi-Fredholm
operator, letting n(A) = dim N(A) and d(A) = dim H/R(A), then we define the index of A
by ind(A) = n(A) — d(A). An operator A is called Weyl if it is a Fredholm operator of index
zero, and is called Browder if it is Fredholm “of finite ascent and descent”. We write a(A)
for the ascent of A € B(H). Let A* denote the conjugate of A € B(H). If A € B(H), write
o(A) for the spectrum of A; 0,(A) for the approximate point spectrum of A; moo(A) for the
isolated points of o(A) which are eigenvalues of finite multiplicity; 7j,(A) for the isolated points
of o,(A) which are eigenvalues of finite multiplicity. Let p,(A4) = C\o,(A). The essential
spectrum o.(A), the Weyl spectrum o,,(A), the Browder spectrum o,(A) of A are defined
by: c.(A) = {\ € C: A — Al is not Fredholm}; o,(A) = {A € C : A — A\ is not Weyl};
op(A) = {A € C: A— Al is not Browder}.
For any A € B(H), let

osr, (A) ={AeC:A— Al isnotin & (H)},
osr (A)={Ae€C:A— Al isnotin ®_(H)}.

We call osp, (A) and osr_(A) upper semi-Fredholm spectrum and lower semi-Fredholm spec-
trum of A, respectively.

Recall that an operator A € B(H) is said to be bounded below if there is a k > 0 for which
lz]] < k ||Az|| for each x € H. A is bounded below if and only if 0 € p,(A4). If ¢ is a compact
subset of C, we write int ¢ for the interior points of ¢; iso ¢ for the isolated points of ¥; 0 ¢
for the topological boundary of 4. When A € B(H) and B € B(K) are given, we denote by
M an operator acting on H @ K of the form

A C
M = :
where C € B(K, H).

In [1] and [2], the authors gave the necessary and sufficient condition for M to be invertible
for some C' € B(K, H) and characterized the spectrum of M¢. In Section 2 in this paper, we
give the necessary and sufficient condition for Mg to be an upper semi-Fredholm operator
(lower semi-Fredholm or Fredholm) operator for some C' € B(K, H) and characterize the semi-
Fredholm spectrum and essential spectrum of M¢.

In Section 3, we show the passage from ogp, (A)Uosp, (B) (0c(A)Uoe(B)) to osr, (Mc)
(0e(Mc¢)) can be described as follows: B B B

O'SFi(A) U USFi(B) = O'SFi(MC) uY, Ue(A) U O'e(B) = Ue(Mc) Uu¥,
where ¢ lies in certain holes in osr, (M¢) (0.(Mc)), which happen to be subsets of ogr_(A)N
O’SF+ (B)

In Section 4, we explore how Weyl’s theorem, Browder’s theorem, a-Weyl’s theorem and
a-Browder’s theorem survive for 2 x 2 upper triangular operator matrices M. Weyl’s theorem
for operator matrices was studied in [5]. We have an example to show that our result is not
compatible with the main theorem in [5].

2 Semi-Fredholm Spectrum for Operator Matrices
Lemma 2.1  An operator A € B(H) is upper semi-Fredholm if and only if A*A is Fredholm.

Proof It is obvious.
In this section, our main results are:

Theorem 2.2 A 2 x 2 operator matric Mo = (‘6‘ g) s an upper semi-Fredholm operator for
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some C € B(K, H) if and only if A is an upper semi-Fredholm operator and:
n(B) < oo or n(B) = d(A) = oo, if R(B) is closed;
d(A) = 0. if R(B) is not closed.

Proof We first claim that if A € &, (H) and R(B) is closed, then
n(B) < oo or n(B) =d(A) = 0o <= M¢ € &, (H & K) for some C € B(K, H).
If R(A) and R(B) are closed, then M¢ as an operator from H @ K = (N(A) ® R(A*)) &
(N(B)® R(B*)) = N(A)® R(A*)® N(B)® R(B*) into H® K = (N(A*)® R(A)) & (N(B*) ®
R(B)) = N(A*) ® R(A) @ N(B*) ® R(B) has the following operator matrix:

0 0 Cii Ci2
A A
Mg = C _ 10 A Co1 Ca
0 B 0 0 0 0
0 0 0 B
Clearly, A; and Bj; are invertible. So M¢ is upper semi-Fredholm if and only if the operator

0 0 Cu 0

0 A4 0 0
My, = '

0 0 0 0

0 0 0 B

is upper semi-Fredholm. By Lemma 2.1, M{, is upper semi-Fredholm if and only if Mg M{. is
Fredholm, but

0 0 0 0 0 0 Cy O 0 0 0 0
M = 0 Ar 0 0 0 A 0 0 | _|[0 A4 0 0
cy, 0 0 0 00 0 0 0 0 CyChu 0

0O 0 0 B 00 0 B 0 0 0 BB

is an operator on H & K = N(A) ® R(A*) @ N(B) ® R(B*). Noticing the fact above, the first
part of Theorem 2.2 is easy verified. In fact, to end the proof, what remains is to check under
which conditions the operators AjA;, C};C11 and Bj B; are Fredholm.

If Mc € &, (H ® K) for some C € B(K,H) and R(B) is closed, then A € ®,(H) and
Cy1 € D4, (N(B),N(A*)). Without loss of generality, we suppose that n(B) = oo, then we
need to prove that d(A) = oco. If not, then n(A*) < co. It induces that Cy1N(B) is finite-
dimensional. Then N(C};1) must contain an orthonormal sequence {y,}52; in N(B). It is in
contradiction to the fact that n(Ci1) < occ.

Conversely, suppose that n(B) < oo or n(B) = d(A) = co. If n(B) < oo, then B € & (K).
By Mc = (£ %)(£9)(49), we know that Mc € @, (H @ K) for every C € B(K, H). In the
following, suppose n(B) = d(A) = co. Since N(B) and R(A)* are separable, there exists a
linear operator Cy; with domain N(B) and range R(A)* = N(A*) such that ||C11y|| = ||y| for
every y € N(B). Define an operator C : K — H by

Cii 0 N(B) N(A7)
C= : — . (1)
0 0 R(B*) R(A)
Clearly, C'j;C1; is Fredholm and hence M¢ is Fredholm. By the way, in this case, we can show
that n(M¢) = n(A) < co.
Next we claim that if A € &, (H) and R(B) is not closed, then
d(A) = 00 <= M¢ € &, (H & K) for some C € B(K, H).
If R(A) is closed and R(B) is not closed, we first attend the following fact.
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If R(B) is not closed, B = UP is the polar decomposition and P = fOHB” AFE)y is the
spectral representation of P. R(B) is not closed implies that dim E([0, §))K is infinite for each
small enough § > 0. In this case, there exists a slight discrepancy for the space decomposition.
M as an operator from H & K = N(A) @ R(A*) ® E([0,9))K @ E([6, || B||)) K into H & K =
NA*)Y@ R(A) @ (N(B) @ UE([0,9))K) ® UE([4, || B||]) K has the following operator matrix:

0 0 Ci1 Ci2
A A
Mg = c _ 0 Ay Cun Oy
0 B 0 0 Bij 0
0 O 0 Boo

It is easy to see that A; and Bss are invertible, hence M¢ is upper semi-Fredholm if and only
if the operator

0 0 Cu 0

0 A 0 0
MY = '

0 0 By 0

0 0 0 B

is upper semi-Fredholm. By Lemma 2.1, M{, is upper semi-Fredholm if and only if MM/, is
Fredholm, but

0o 0 0 0 0 0 Cy O
MEM, - 0 A7 0 0 0 A 0 0
cy 0 By 0 0 0 By 0
0 0 0 B 0 0 0 By
0 0 0 0
| o A4 0 0
o o cpCu+BRBn 0
0 0 0 B3, Boo

is an operator on H @ K = N(A) @ R(A*) ® E([0,9))K @ E([4, || B||]) K. So, to complete the
proof, it is enough to verify under which conditions the operators A7 A;, C1,C11 + B, B11 and
B3, Byo are Fredholm.

If Mc € &, (H @ K) for some C € B(K, H) and R(B) is not closed, then A € &, (H) and
C{,C11 + By, B1; is Fredholm. We need to prove that d(A) = oco. If not, then N(A*) is finite-
dimensional, which means that C1; is a finite rank operator. Therefore C},C1; is compact. By
the perturbation theory of the Fredholm operator, we get that Bf, Bi; is Fredholm. Then By
is upper semi-Fredholm, it induces that B is upper semi-Fredholm, which is in contradiction to
the fact that R(B) is not closed. Now we have proved that d(A4) = co.

Conversely, suppose that R(B) is not closed and d(A) = co. By dim R(A)t = oo, there
exists an isometrically isomorphic linear operator T : K — R(A)t = N(A*). Define an
operator C: K — H by

L
C=<T>:K—><R(A) >
0 R(A)
Then M¢ € ® (H®OK). In fact, let (%) € N(Mc). Then Au+Cv = 0 and hence Au = —Cv €
R(A)NR(A)*t. Thus Au = Cv = 0. C is injective, then v = 0. Therefore N(Mc) € N(A)@{0}.
It follows that n(Mc) < n(A) < oo and hence n(M¢) = n(A). Suppose Mc (37 ) — (%9).
Then Au, + Cv, — ug and Bv, — vg. Thus {Au,} and {Cv,} are Cauchy sequences.

It follows that v, is a Cauchy sequence. Let v, — yo and Au, — Axg. Then (%g) =
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Mc(59) € R(Mc), which means that R(Mc¢) is closed. Then M € @ (H & K). The proof is
completed.
A similar idea can be used to complete the proof of the following theorem:

Theorem 2.3 A 2 x 2 operator matriz Mo = (6‘ g) s a lower semi-Fredholm operator for
some C € B(K, H) if and only if B is a lower semi-Fredholm operator and:

d(A) < oo or d(A) =n(B) =00, if R(A) is closed;
n(B) = oo, if R(A) is not closed.

From Theorems 2.2 and 2.3, we have

Theorem 2.4 A 2 x 2 operator matrix Mo = (6‘ g) 18 a Fredholm operator for some

C € B(K, H) if and only if A is an upper semi-Fredholm operator, B is a lower semi-Fredholm
operator and one of the following cases exists:

(a) d(A) < oo and n(B) < oo; (b) d(A) =n(B) = .

Proof Suppose that there exists C' € B(K, H) such that M¢ is Fredholm. Then A € ®(H),
B e &_(K) and A is Fredholm <= B is Fredholm and therefore Case (a) or Case (b) exists.

For the converse, suppose A € &, (H) and B € ®_(K).

(I) Suppose that d(A) < co and n(B) < co. Then A and B are Fredholm, hence for each
C € B(K,H), M¢ is Fredholm.

(IT) Suppose that d(A) = n(B) = co. Define C € B(K, H) as (1) in Theorem 2.2. Then
Me is an upper semi-Fredholm operator. In order to prove that My is Fredholm, we need
to prove that n(M{) < co. Let ( ) € N(M¢). Then A*u = 0 and C*u + B*v = 0. Since
u € N(A*) = R(A)* and C* = ( i O) by the definition of Cy1, it follows that C*u = Cjju €
N(B) = R(B*)*. Then Cjju = C’ u = —B*» =0. Thus v = 0 and v € N(B*). Now we get
that N(Mg) C {0} @ N(B*), therefore n(Mp) < n(B*) = d(B) < co. Then M¢ is Fredholm.

From the proof of Theorem 2.4, we find that:

Corollary 2.5 A 2 x 2 operator matriz Mo = (‘3 g) is invertible for some C € B(K,H) if
and only if A is bounded below, B is surjective, and d(A) = n(B).

Corollary 2.6 A 2 x 2 operator matrix M¢c = (6‘ g) is an upper semi-Fredholm operator
for some C € B(K,H) and n(M¢) = n(A) if and only if A is an upper semi-Fredholm operator
and:

n(B) < d(A), if R(B) is closed;

d(A) = oo, if R(B) is not closed.
Proof By the proof of Theorem 2.2, we need to prove only that if A € ®;(H) and R(B) is
closed and if 3C € B(K, H) such that M¢ € @ (H®K) and n(M¢) = n(A), then n(B) < d(A).
If d(A) = oo, the result is clearly true. Then, we suppose that d(4) = m < oo, then n(B) < co.
Suppose n(B) = n and let {e1,ea,...,e,} be an orthonormal basis for N(B). If n > m, let
Ce; = a; + f3;, where a; € R(A) and 3; € R(A)*. Then {Ce; —a;} (i =1,2,...,n) are linearly
dependent. There exists {a;} C C such that a; # 0 for some j and Y. ; a;Ce; = > 1" | a;o; €
CN(B)NR(A). Since N(M¢) = N(A) @ {0}, it follows that CN(B) N R(A) = {0}. Therefore
> a;Ce; = 0. We have that C|y(p) is injective. To see this, if not, there exists y € N(B)
such that y # 0 and Cy = 0. Then () € N(M¢). It is in contradiction to the fact that
N(M¢) = N(A) @ {0}. Therefore >_1 , a;e; = 0. It is a contradiction. Then n(B) < d(A).
Corollary 2.7 A 2x2 operator matrix Mo = (6‘ g) is bounded below for some C € B(K, H)
if and only if A is bounded below and:

n(B) < d(A), if R(B) is closed;
d(A) = oo, if R(B) is not closed.

Corollary 2.8 An 2 x 2 operator matriz Mo = (‘3 g) 18 a lower semi-Fredholm operator

for some C € B(K,H) and d(M¢) = d(B) if and only if B is a lower semi-Fredholm operator
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and:
d(A) < n(B), if R(A) is closed;
{ n(B) = oo, if R(A) is not closed.

The following corollary is immediate from Theorems 2.2 and 2.3:
Corollary 2.9  For a given pair (A, B) of operators, we have

ﬂ osr, (Mc) = osr, (A) U{)\ € C: R(B— ) is not closed and d(A — \) < oo}
CeB(K,H)

U{)\ €C: R(B—AI) is closed and n(B — \I) = oo, d(A— A) < oo}

and

ﬂ osr (Mg) = osp_(B) U{)\ € C: R(A—XI) is not closed and n(B — AI) < oo}
CeB(K,H)

U{)\ € C: R(A—XI) is closed and d(A — \) = oo, n(B — \I) < oo}.

3 The Passage from ogp, (A) Uosp, (B) (0c(A) Uoe(B)) to osr, (Mc) (0c(Mc))

In [4], it was shown that for every C' € B(K, H), the passage from c,,(A) U 0, (B) to o, (M¢)
is accomplished by removing certain open subsets of 0, (A4) N o (B) from the former, that is,
there is the equality

n(0w(A) | Jow(B)) = n(ow(Me)),
where 7(-) denotes the “polynomially-convex hull”. More precisely,

ow(A) U ow(B) = 04 (M¢) U% ,
where ¢ is the union of certain of the holes in ¢,,(M¢) which happen to be subsets of o,,(4) N
0(B). The passage from osr, (A)Uosr, (B) (0sp_(A)Uosp_ (B)) toosr, (Mc) (osr_(Mc)) is
more delicate.

Theorem 3.1  For a given pair (A, B) of operators, we have that for every C € B(K, H),
77(0'SF+ (A) U OSFy (B)) = U(USF+ (MC))a
where 1(-) denotes the “polynomially-convex hull”. More precisely,
OSF, (AU JSF+(B) =0sF, (Mc)U9¥,
where 9 lies in certain holes in osp, (Mc), which happen to be subsets of osp_(A)Nosp, (B).
Proof First we claim that, for every T € B(H),

n(osr (1)) = n(ow(T)). (2)
Since osr, (T) € 0w (T), we need to prove 9 o,(T) C 0 osp, (T). But since int ogp, (T') C
int 0, (T), it suffices to show that do.,(T) C osr, (T). Suppose \g € do(T)\osr, (T). By
the perturbation theory of upper semi-Fredholm, there exists ¢ > 0 such that T — X\ € &, (H)
and ind(T — AI) = ind(T — Aol) if 0 < |X — Ag| < €. Since A\g € do,,(T), there exists A; such
that 0 < [Ay — Ao < e and T — A1 is Weyl. Then T — Aol is Weyl. It is in contradiction to
the fact that \g € 0,(T) and hence 0 0,,(T") € o5p, (T'). This proves (2). Similarly, for every
Ty € B(H) and Ty € B(K), n(osr,(Th) Uosr, (T2)) = n(0w(T1) U 0, (T2)). Then for each
C € B(K,H),

n(osr, (M) = n(ow(Mc)) = n(ow(A) Uow(B)) = n(osk, (A) Uosr, (B)). (3)
Now suppose A € (05, (A)Uosr, (B))\osr, (Mc). Then X € osp, (B)\osr, (A). By Theorem
2.2, if R(B — AI) is closed, then n(B — AI) = oo and hence d(A — AI) = oo. If instead
R(B — M) is not closed, then using Theorem 2.2 again, d(A — M) = oco. Therefore \ €
osr_(A) Nosp, (B). (3) says that the passage from ogp, (Mc) to ogp, (A) U osp, (B) is
the filling in certain of the holes in o5p, (Mc). But since osp, (A) Uosp, (B)\osr, (Mc) is
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contained in osr_(A)Nosp, (B), it follows that the filling in certain of the holes in o5, (M¢)
should occur in osp_(A) Nosp, (B). The proof is completed.
For lower semi-Fredholm spectrum and essential spectrum, we also have:
Theorem 3.2  For a given pair (A, B) of operators, we have that for every C' € B(K, H),
n(osp_(A)Uosr_ (B)) =n(osr_ (Mc)),
where 1(+) denotes the “polynomially-convex hull”. More precisely,
OSF_ (A) Uosr (B) =O0SF_ (Mc) U g,
where ¢ lies in certain holes in ogp_(Mc), which happen to be subsets of osp_(A)Nosp, (B).
Theorem 3.3  For a given pair (A, B) of operators, we have that for every C € B(K, H),
n(oe(A) Uoe(B)) = n(oe(Mc)),
where n(-) denotes the “polynomially-convex hull”. More precisely,
0.(A)Uo(B) =0.(Mc)UY,
where & lies in certain holes in o.(Mc), which happen to be subsets of osp_(A) Nogp, (B).
Corollary 3.4 Ifosr_ (A)Nosr, (B) has no interior points, then for every C € B(K, H),
osr, (A)Uosp, (B) =osp, (Mc); osp_(A)Uosp_(B) =osr_ (Mc);
and 0.(A)Uo.(B) = o.(M¢).

4 Weyl’s Theorem for 2 x 2 Upper Triangular Operator Matrices

Weyl [6] examined the spectra of all compact perturbations A + K of a Hermitian operator A
and discovered that A € o(A + K) for every compact operator K if and only if A is not an
isolated eigenvalue of finite multiplicity in o(A). Today this result is known as Weyl’s theorem.
Similar to Weyl’s theorem, there is a-Weyl’s theorem ({7, 8]).

It is well known that Weyl’s theorem holds for A € B(H) if

a(A)\ow(A) = moo(A);
and Browder’s theorem holds for A if
ow(A) = op(A).

Clearly, Weyl’s theorem implies Browder’s theorem.

Let ® (H) be the class of all A € & (H) with ind(A) <0, and for any A € B(H), let

Oea(A) ={Ae€C:A— Al isnotin ® (H)}

and

oab(A) ={A € C: A — Al is not an upper semi-Fredholm operator with finite ascent}.
We call g.,(A) the essential approximate point spectrum of A and o4,(A) the Browder essential
approximate point spectrum of A.

Similarly, we say that a-Weyl’s theorem holds for A if there is equality

0a(A)\oea(A) = mGo(A);
and that a-Browder’s theorem holds for A if there is equality
Uea(A) = Uab(A)'
It is known ([7, 8]) that if A € B(H), then we have
a-Weyl’s theorem = a-Browder’s theorem and Weyl’s theorem
= Browder’s theorem.

Weyl!’s theorem may or may not hold for a direct sum of operators for which Weyl’s theorem
holds. Thus Weyl’s theorem may fail for upper triangular operator matrices, so does a-Weyl’s
theorem. Weyl’s theorem for upper triangular operator matrices is more delicate in comparison

with the diagonal matrices. In this section, we consider this question: If Weyl’s (a-Weyl’s)
theorem holds for (‘6‘ g,), when does it hold for (6‘ g)? We begin with:
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Lemma 4.1  For a given pair (A, B) of operators, if both A and B have finite ascents, then
for every C € B(K,H), Mc has finite ascent.

Proof Suppose a(A) = p and a(B) = ¢, let n = max{p, q}. For every C € B(K, H), if we have
N(MZ") = N(MZ"), we get the result. So we need to prove only N(MZ'™') C N(MZ").

If ug € N(Mé"“), supposing ug = (xg, yo), then

0= Ménﬂ(xoayo)

= (A" Mgy 4 A"Cyo + A" 1CByo + - - -+ A"CB o + - - - + CB*"yo, B> ly),
then B?"*t1ly, =0 and
ATy + A?2"Cyg + A*"1CByy + - - + A"CB™yo + - - - + CB*"yy = 0.
So yo € N(B**1) = N(B™), thus
AP g + AP Cyg + AP 'CByg + - - + A"TICB" 1y = 0,

that is,
An+1[An.’E0 + An—lcyo + AH—QCByO 4+ .4 C’Bn_lyo] =0,
and hence
A'zg+ A" 'Cyo + A" 2CByg + - - - + CB" 'yg € N(A™H!) = N(A™).
Then

A% xg + AP0y 4+ AP 2CByg + - - - + AMC By = 0.

Now we get that

(AZnZEO +A2n—lcy0 4 +AnCBn—1yO +An—1CBny0 4 +CBQ”_1yO7 B2ny0) — O7
that is, MZ'ug = 0 and hence ug € N(MZ"). So N(MZ"*') = N(MZ"), and hence M¢ has
finite ascent.

Theorem 4.2 Ifogr (A)Nosp, (B) has no interior points, then for every C € B(K, H) :
(a) Browder’s theorem holds for (4 %) = Browder’s theorem holds for (4 ) ;
(b) a-Browder’s theorem holds for (6‘ g,) = a-Browder’s theorem holds for (6‘ g)

Proof (a) We need to prove that o,,(M¢c) = op(M¢) for every C € B(K, H). Since o,,(M¢) C
op(M¢), we need to prove only o,(M¢g) C oy(Mc). Suppose that Mo — Aol is Weyl. Then
A—=XI € P (H) and B — NI € ®_(K) and A — \oI is Fredholm <= B — A\g! is Fredholm.
Corollary 3.4 asserts that ogp, (A) Uosk, (B) = osp, (Mc). Since Ag is not in ogp, (Mc), it
follows that Ao is not in ogp, (B). Then B — Aol is Fredholm and hence A — Ao/ is Fredholm.
Thus by ind((‘g g) — )\OI) = ind(M¢ — A\oI) = 0, we get that (6‘ g) — Mol is Weyl. Browder’s
theorem holds for (4 %), then a(A—XoI) < 0o and a(B—Aol) < oo. Therefore a(Me—Aol) <
oo (Lemma 4.1). [9, Theorem 4.5] asserts that Mc — \oI is Browder. Then Browder’s theorem
holds for M¢ for every C € B(K, H).

(b) Since 0eq(Mce) C 04 (M), we need to prove only that o.,(Mc) C 0eq(Mc). Suppose
Mec — Mol € (I);(H @ K) Then A — M\l € ‘b+(H) and Ao is not in O’SF+(M0) = O’SF+(A) @]
osp, (B). Therefore (4 ) — Aol € @, (H @ K) and ind((§ ) — Aol) = ind(Mc — XoI) <0,
which means that Ay is not in aea(‘g %). a-Browder’s theorem holds for (‘3 %), then (A —
Aol) < 00 and (B — Aol) < 00, hence a(M¢g — M) < oo (Lemma 4.1). It is shown that Ag
is not in o44(M¢). Then o.q(Mc) = oap(Mc) for every C € B(K, H), and hence a-Browder’s
theorem holds for M¢.

A € B(H) is called approximate-isoloid (abbrev. a-isoloid) if every isolated point of ¢, (A)
is an eigenvalue of A, and A is called isoloid if every isolated point of o(A) is an eigenvalue
of A.

Remark 4.3 Theorem 4.2 may fail for “a-Weyl’s theorem” even with the additional assump-
tion that a-Weyl’s theorem holds for A and B and both A and B are a-isoloid. To see this, let
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A, B, C € B(¥fs) be defined by
A(.’I}l,l’Q,SE’g, .. ) = (07*7;13 07 Z2, 07 Z3, .. ')a
B(xwa; x3, .. ) = (07$2a 07$4; 07$6; .. ')a
1 1
C(I17I27I3, .. ) = <O, 0, O, 07 gl‘g, O, 5565, ce > .
Then
0a(A) = 0ea(A) ={A € C: |\ =1}, osr_ (A) ={A € C: |\ <1}, 75,(A) =0,
0a(B) = 0ca(B) = 05r, (B) = {0,1}, 7Gy(B) =0,
which says that a-Weyl’s theorem holds for A and B, both A and B are a-isoloid and ogp_(A)N
osr, (B) has no interior points. Also a straightforward calculation shows that

A 0 A 0 A C A C
0a<0 B)Uea<0 B>0a<0 B>06a<0 B){)\GC:|)\|1}U{O},
wso(fj ;>=®, w&)(g‘ g>={0}.

Then a-Weyl’s theorem holds for (4 %), but fails for (4 ).
But for Weyl’s theorem, we have:

Theorem 4.4 If osp_(A) Nosk, (B) has no interior points and if A is an isoloid operator
for which Weyl’s theorem holds, then for every C € B(K,H),
Weyl's theorem holds for (4 %) = Weyl's theorem holds for (4 G).

Proof Theorem 4.2 gives that o(M¢)\ow(Mc) C moo(Mc). For the reverse inclusion, suppose
that Ao € moo(M¢). Then there exists € > 0 such that Mo — A is invertible and hence
A — Ml is bounded below and B — AI is surjective if 0 < |A — Xg| < €. Since osp, (Mc) =
osr, (A) Uosp, (B) and A is not in ogp, (Mc), it follows that B — AI is Fredholm and hence
A— I is Fredholm. Then (# %) — Al is Fredholm with ind((4 &%) —AI) = ind(M¢c — AI) = 0,
that is, (5 &) — Al is Weyl. Weyl’s theorem holds for (4 &), then A — Xl and B — \I are
Browder if 0 < |A — Ag| < €. Thus A — Al and B — AI are invertible because A — AI is bounded
below and B — AI is surjective. Now we have that Ay € iso 0(’6‘ g). The following proof is the
same as the proof in Theorem 2.4 in [5]:
Remark 4.5 Theorem 4.4 in this paper is not compatible with Theorem 2.4 in [5]. For
example:

(a) Let A, B € B({3) be defined by

A(SL'17.’1727.’173, .. ) = ($2,$4,.”L'6, .. .), B(SL’l,.’L'Q,.’L'g, .. ) = (0,1'170,1'270,.%'37 .. )

Then

0(A) =o0uw(A) =0c(A) ={AeC: A <1}, o5 (A) ={A€C: [A| =1}, mo(4) =0,

osp, (B) ={A€C: |\ =1}, 0.(B)={A € C: |\ <1},

A 0 A 0 A 0
J(O B>:Jw<0 B>:{A€(C:|)\|<1},7r00<0 B)Z@.

We have:

(I) osr_(A) Nosp, (B) has no interior points;

(II) Both SP(A) and SP(B) have pseudoholes;

(III) A is isoloid and Weyl’s theorem holds for A;

(IV) Weyl’s theorem holds for (4 ).

Then using Theorem 4.4 in this paper, Weyl’s theorem holds for (6‘ g) for every C € B(¢3).
But using Theorem 2.4 in [5], we don’t know whether Weyl’s theorem holds for (6‘ g) for every
Ce B(ég)
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(b) Let Ty,T5 € B(¢3) be defined by

T1($1,$2,$3, .. ) = (07$1507$2507$35 .. ')7 T2(£17x27$35 .. ) - ($2,Z‘4,-T6, .. )

and let
A= Tl 0 and B = TQ.
0 1Ty
Then
0(A) =0y(A) =0c(A) =05r, (A) =0g5r_(A) ={A € C: |A\ < 1}, moo(A) =0,
A 0 A 0 A 0
0 B = Oy 0 B ={AeC: |\ <1}, moo 0 B = 0.

This means that

(I) osr_(A)Nosp (B) = {\ € C: |\ < 1} has interior points;

(I) SP(A) has no pseudoholes;

(IIT) A is isoloid and Weyl’s theorem holds for A;

(IV) Weyl’s theorem holds for (4 ).

Then by Theorem 2.4 in [5], Weyl’s theorem holds for (4 &) for every C € B(K, H). But

using Theorem 4.4 in this paper, we don’t know whether Weyl’s theorem holds for M¢.

In spite of Remark 4.3, similarly to the proof of Theorem 4.4, we have:

Theorem 4.6  Suppose that osr_(A) has no interior points and oqp(B) = 04(B). If A is an
a-isoloid operator for which a-Weyl’s theorem holds, then for every C € B(K, H),

a-Weyl’s theorem holds for (6‘ g) = a-Weyl’s theorem holds for (6‘ g)
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