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Abstract In this paper, the Dirac operator on the Klein model for the hyperbolic space is considered.

A function space containing L2-functions on the sphere Sm−1 in R
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solutions for this operator, is defined, and it is proved that this gives rise to a Hilbert module with a

reproducing kernel.
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1 Introduction

In this paper Clifford analysis techniques are used to construct subspaces of L2(Sm−1), the
space of square integrable functions on the sphere Sm−1, which contain boundary values of
solutions for the Dirac operator on the hyperbolic unit ball. In Section 2 several models for
the hyperbolic unit ball will be given. The Dirac operator is at the very heart of Clifford
analysis, offering a direct and elegant generalization of the theory of holomorphic functions
in the complex plane. Standard reference books on the theory of Clifford analysis on the flat
Euclidean space Rm are [1], [2] and [3], and a nice overview of the most basic results is given in
[4]. In Section 3 we recall the basic notions and concepts of Clifford analysis which will be used
in the course of this paper. In Section 4 we then define the Dirac operator on the Klein model
for the hyperbolic unit ball and we state the main results from the function theory for this
operator. In Section 5 a function space containing boundary values of hyperbolic monogenics is
introduced and by means of some results from the theory of Clifford analysis on the Lie sphere,
it is proved that this function space has a reproducing kernel.

2 The Hyperbolic Model

Consider the real orthogonal space R
1,m, i.e. the flat Minkowski space-time, with orthonormal

basis {ε, e1, . . . , em} and endowed with the quadratic form

Q1,m(T, X) = T 2 −
m∑

j=1

X2
j = T 2 − |X|2.

Space-time vectors are denoted by εT +X, where we prefer to make a clear distinction between
the temporal coordinate T and the spatial coordinates Xj (1 ≤ j ≤ m). The nullcone NC is
defined as the set of space-time vectors for which Q1,m(T, X) = 0, and separates the time-like
region (Q1,m(T, X) > 0) from the space-like region (Q1,m(T, X) < 0). The time-like region is
the union of the future cone FC (T > 0) and the past cone PC (T < 0).

The hyperbolic unit ball H+ is then defined as the following subset of FC:
H+ = {εT + X ∈ FC : Q1,m(T, X) = 1}.
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This m-dimensional surface embedded in flat Minkowski space-time R
1,m is to be interpreted

as the hyperbolic analogue of the unit sphere Sm embedded in the flat Euclidean space Rm+1.
A projective model for the hyperbolic unit ball is obtained by considering the manifold of rays

ray(FC) =
{
λ(εT + X) : εT + X ∈ FC, λ ∈ R+

}
inside the future cone, see e.g. [5] and [6], [7]. Other models are then readily obtained by
intersecting this manifold ray(FC) with an arbitrary surface Σ ⊂ FC such that each ray
intersects Σ at a unique point.

The Klein model is obtained by intersecting ray(FC) with the hyperplane Π ↔ T = 1,
realizing the hyperbolic unit ball inside Bm(1) ⊂ Rm. Provided with the so-called Cayley–
Klein–Hilbert metric ds2

K , one obtains a metric model (Bm(1), ds2
K) for the hyperbolic unit

ball which is, however, not conformal. This is a serious disadvantage, but it is compensated for
by the fact that the straight lines in this model are restrictions to Bm(1) of straight lines with
respect to the standard Euclidean metric on Bm(1), i.e. straight lines in the Klein model for
the hyperbolic unit ball are chords in Bm(1). In the case m = 2 one obtains the classical Klein
model for the hyperbolic plane, whose metric ds2

K , in coordinates (x, y) on R2, is given by

ds2
K =

(1 − y2)dx2

(1 − r2)2
+

xydxdy

(1 − r2)2
+

(1 − x2)dy2

(1 − r2)2
.

3 The Clifford Setting

As we use the Klein model for the hyperbolic unit ball realized in the flat Euclidean space,
we need both the Clifford algebra R1,m associated with the flat Minkowksi space-time and the
Clifford algebra Rm. In Section 5 we will then need some results concerning Clifford analysis
on the Lie sphere too, whence we consider three subsections:

3.1 Clifford Analysis on Flat Euclidean Space
Let {e1, . . . , em} be an orthonormal basis for R

m endowed with the standard Euclidean inner
product 〈x, y〉 =

∑
j xjyj . The Clifford algebra Rm is then defined as the 2m-dimensional real

associative, but non-commutative, algebra generated by the basis for Rm with multiplication
rule: ejej + ejei = −2δij . An element of Rm is called a Clifford number and has the form
a =

∑
A⊂M aAeA, with aA ∈ R and where A = {i1, . . . , ik}, i1 < · · · < ik is a subset of

M = {1, . . . , m} such that eA = ei1 · · · eik
. If A has k elements, eA is called a k-vector. Denoting

the projection of a Clifford number a on its k-vector part as [a]k, we get a =
∑m

k=0[a]k, with
[a]k ∈ R

(k)
m . The even subalgebra is defined as the subspace R

(+)
m =

∑
k even R

(k)
m of Rm.

Vectors in R
m are identified with 1-vectors in Rm. Note that for x and y ∈ R

m, the Clifford
product xy = x · y + x ∧ y incorporates both the inner product x · y = −〈x, y〉 = −∑m

j=1 xjyj

and the outer product x ∧ y =
∑

i<j eij(xiyj − xjyi). The conjugation (bar-map) on Rm is
defined as the anti-automorphism sending ej 	→ ej = −ej , with ab = ba. Its extension to the
complexified Clifford algebra Cm = Rm ⊗C is the Hermitian conjugation a 	→ a+, given by the
tensor product of the bar-map on Rm and the classical complex conjugation.

The Clifford group Γ(m) is the subgroup of Rm generated by the non-zero vectors; the Pin
group Pin(m) is the subgroup of Γ(m) consisting of products of unit vectors in Rm and the
Spin group Spin(m) is the subgroup of Pin(m) consisting of products of an even number of
unit vectors. For an element s ∈ Pin(m) the map χ(s) : R

m 	→ R
m : x 	→ sxs̄ induces an

orthogonal transformation on Rm. In this way, Pin(m) defines a double covering of the group
O(m) whereas the Spin group defines a double covering of SO(m).

The Dirac operator on Rm is defined as the vector derivative ∂ =
∑

j ej∂j , which is a first-
order Spin(m)-invariant differential operator factorizing the Laplacian Δm on Rm: ∂2 = −Δm.
Let Ω be an open subset of Rm and let f : Ω 	→ Rm be an element of C1(Ω). If ∂f = 0 in Ω, f
is called monogenic on Ω. It is clear that monogenic functions in Ω form a subclass of harmonic
functions in Ω. In polar coordinates the Dirac operator admits the following decomposition:
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∂ = ξ(∂r + 1
r Γ), where x = rξ and Γ = −x ∧ ∂ is the spherical Dirac operator on Sm−1. This

operator is strongly related to the Dirac operator on the sphere, see e.g. [8], [9] and [10]. In
terms of the so-called momentum operators Lij = xi∂xj

−xj∂xi
it is given by Γ = −∑

i<j eijLij .
The restriction Pk(ξ) to Sm−1 of a k-homogeneous monogenic polynomial Pk(x) is called an

inner spherical monogenic of order k. It is an eigenfunction of Γ satisfying ΓPk = −kPk. The
restriction Qk(ξ) of a homogeneous monogenic function Qk(x) of degree (1−k−m) on Rm \{0}
is an outer spherical monogenic of order k, satisfying ΓQk = (k+m−1)Qk. The (right Clifford)
modules containing these functions are, respectively, denoted as M+(k) and M−(k). Inner and
outer spherical monogenics are related as follows: Pk(ξ) ∈ M+(k) ⇒ ξPk(ξ) ∈ M−(k) and vice
versa. Each function f ∈ L2(Sm−1) can be decomposed as f(ξ) =

∑∞
k=0 P (k)[f ](ξ)+Q(k)[f ](ξ)

where the series converges in L2-sense. The projections on M+(k) and M−(k) are given by

P (k)[f ](ω) =
1

Am

∫
Sm−1

[
C

m
2

k (〈ξ, ω〉) + ωξC
m
2

k−1(〈ξ, ω〉)
]
f(ξ)dS(ξ)

and
Q(k)[f ](ω) = − 1

Am
ω

∫
Sm−1

[
C

m
2

k (〈ξ, ω〉) + ωξC
m
2

k−1(〈ξ, ω〉)
]
ξf(ξ)dS(ξ).

The fundamental solution for the Dirac operator is given by the so-called Cauchy kernel E(x),
defined as E(x) = x

|x|m , x ∈ Rm, satisfying ∂E(x) = −δ(x) = E(x)∂. Due to translational
invariance of the Dirac operator on R

m, we also have ∂xE(x − y) = −δ(x − y).

3.2 Clifford Analysis on Flat Minkowski Space-time
The Clifford algebra R1,m is generated by {ε, e1, . . . , em} with the multiplication rules εei+eiε =
0, eiej + ejei = −2δij and ε2 = 1. For the definitions of Clifford numbers and k-vectors in R1,m

we refer to the flat Euclidean space. For two space-time vectors εT +X and εS +Y , the Clifford
product reduces to (εT + X)(εS + Y ) = (εT + X) · (εS + Y ) + (εT + X) ∧ (εS + Y ), where
the inner product is given by (εT + X) · (εS + Y ) = ST − 〈X, Y 〉 and the outer product by
(εT + X) ∧ (εS + Y ) = SXε − TY ε + X ∧ Y . In order to define the conjugation on R1,m it
suffices to note that ε = −ε and aε = −εa for all a ∈ Rm. Defining the so-called main involution
by ε̃ = −ε, ẽj = −ej and ãb = ãb̃ for all a, b ∈ R1,m, we are able to define the most important
subgroups of R1,m: the Clifford group Γ(1, m) is the set of invertible elements a ∈ R1,m such
that a(εT + X)ã−1 ∈ R1,m for all εT + X in R1,m, the Pin group Pin(1, m) is the quotient
group Γ(1, m)/R

+ and the Spin group Spin(1, m) = Pin(1, m)∩R
(+)
1,m. The Pin group defines a

double covering of O(1, m), whereas Spin(1, m) defines a double covering of SO(1, m).
The Dirac operator on the flat Minkowski space-time R1,m is then defined as the vector

derivative ∂X = ε∂T − ∂X , with ∂X =
∑

j ej∂j , which is a Spin(1, m)-invariant first-order
differential operator factorizing the wave-operator on R

1,m. A function F (T, X) satisfying
∂XF = 0 on an open subset Ω ⊂ R1,m is monogenic with respect to the Dirac operator on R1,m.
However, such a function is not hyperbolic monogenic. A hyperbolic monogenic function is a
monogenic function with respect to the operator ∂X defined on the hyperbolic unit ball, which–in
view of the fact that the true model for the hyperbolic unit ball is projective–means that it
must be defined on the manifold of rays. This can be done by considering the homogeneous
Clifford line bundle R1,m;α =

{
((T, X), a) ∈ R

1,m
0 × R1,m

}
/ ∼ where α ∈ C and

((T, X), a) ∼ (λ(T, X), λαa) , λ ∈ R+.
The Dirac operator on the hyperbolic unit ball is then defined as the Dirac operator ∂X on the
flat Minkowski space-time R

1,m acting on sections of this bundle, i.e. acting on α-homogeneous
functions (α being an arbitrary complex number).

3.3 Clifford Analysis on the Lie Sphere
The Lie ball LBm(1) in Cm is defined by LBm(1) = {z ∈ Cm : L(z) < 1}, where L(z) is the
Lie norm of z = (z1, . . . , zm) = x + iy, given by L(z)2 = |z|2 + (|z|4 − |z2|2) 1

2 . Here, |z|2 stands
for

∑
j |zj |2 and z2 for

∑
j z2

j . The boundary ∂LBm(1) of the Lie ball has a part in common
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with the complex unit ball, viz. the elements z = x + iy ∈ C
m such that L(z) = 1, with x and

y linearly dependent. This particular subset of the Lie ball is the so-called Lie sphere, which
can be represented by LSm−1 = {eitω t ∈ R, ω ∈ Sm−1}. The Lie sphere can also be defined
as S1 × Sm−1/ ∼, where the equivalence relation is given by (eit, ω) ∼ (−eit,−ω), whence
functions on the Lie sphere can always be denoted by f(eit, ω) = f(eitω). The importance of
the Lie ball lies in the following theorem (see reference [11]):
Theorem (Siciak)

1 If a series
∑

k Rk(x) of homogeneous polynomials converges normally in Bm(1), its com-
plexification

∑
k Rk(z) will converge normally in the Lie ball, and hence represent a holomorphic

function there.
2 The Lie ball is the largest area where this is valid in general, i.e. there exists a har-

monic function h(x) such that the complexification
∑

k Sk(z) of its development into spherical
harmonics Sk(x) can not be extended holomorphically beyond the Lie ball.

Let us then consider Cm-valued functions f(z) on Cm. Relevant operators on the Lie sphere
are the Gamma operator Γ and the Euler operator −i∂t and the simultaneous eigenfunctions
of these operators are given by (eitω)lPk(eitω), l ∈ Z and Pk ∈ M+(k). These functions are
spherical monogenics of order (k, l) on LSm−1, belonging to Mk,l. They are the restrictions
to LSm−1 of complex extensions of the Clifford monomials xlPk(x), viz. the simultaneous
eigenfunctions of Γ and r∂r on R

m.
Defining the Hilbert module L2(LSm−1) of square integrable functions on the Lie sphere as

L2(LSm−1) =
{
f(eitω) : ‖f‖L2(LSm−1) < ∞}

, where the Lie norm is given by ‖f‖2
L2(LSm−1) =

[(f, f)]0, with

(f, g) =
1

πAm

∫ π

0

∫
Sm−1

f(eitω)+g(eitω)dS(ω)dt,

we have the orthogonal decomposition L2(LSm−1) =
∑∞

k=0

∑
l∈Z

Mk,l.
Putting θ = 〈ω, ξ〉 for ω and ξ ∈ Sm−1, we have, for f ∈ L2(LSm−1)

f(eitω) =
∞∑

k=0

∑
l∈Z

(eitω)leiktPk,lf(ω)

with Pk,lf(ω) given by the integral
1

πAm

∫ π

0

∫
Sm−1

e−ikt
{
C

m
2

k (θ) + ωξC
m
2

k−1(θ)
}
(eitξ)−lf(eitξ)dS(ξ)dt.

This decomposition refines the decomposition of functions f ∈ L2(LSm−1) into spherical har-
monics on the Lie sphere (see e.g. references [12] and [13]).

Denoting the set of holomorphic functions on the Lie ball by O
(
LBm(1)

)
, we then define

the space L+
2 (LSm−1) as the following Hardy-type space:

L+
2 (LSm−1) =

{
f ∈ O

(
LBm(1)

)
: lim

r→1−

∫ π

0

∫
Sm−1

|f(reitω)|2dS(ω)dt < ∞
}

.

As was pointed out in reference [13], this module is a Hilbert module with reproducing kernel;
the so-called Cauchy–Hua kernel H(z, w). This means that a function f ∈ L+

2 (LSm−1) can be
represented as

f(z) =
1

πAm

∫ π

0

∫
Sm−1

H+(z, eitω)f(eitω)dS(ω)dt,

where the Cauchy–Hua kernel is defined by

H(z, eitω) =
1( − (ω − e−itz)2

)m
2

.

The module L+
2 (LSm−1) can also be defined as

L+
2 (LSm−1) =

{
f ∈ L2(LSm−1) : f =

∞∑
k=0

∞∑
l=0

(eitω)lPk,lf(eitω)
}

,
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defining L+
2 (LSm−1) as a submodule of L2(LSm−1) containing boundary values of holomorphic

functions in the Lie ball.
We end this section with a brief description of a technique to construct a reproducing

kernel for a Hilbert module containing Clifford-algebra-valued nullsolutions for certain Clifford
differential operators P (x, ∂) on the unit ball Bm(1) with polynomial coefficients, the so-called
operators of Frobenius type satisfying the conditions of the following theorem (see [14] and [15]):
Definition A differential operator P (x, ∂) is of the Frobenius type if its nullsolutions f(x)
in Bm(1) can be represented as

f(x) =
∞∑

k=0

rk
{
αk(r2)Pk(ω) + rωβk(r2)P̃k(ω)

}
,

where, for all k ∈ N, the functions αk(r2) and βk(r2) can be written as positive power series

αk(r2) =
∞∑

l=0

alr
2l, βk(r2) =

∞∑
l=0

blr
2l

converging on the open interval ] − 1, 1[, with Pk(ω) and P̃k(ω) belonging to M+(k).
Theorem Consider the differential operator P (x, ∂) of the Frobenius type with nullsolutions
in Bm(1) given by f(x) =

∑∞
k=0

{
αk(r2)Pk(x) + xβk(r2)P̃k(x)

}
, where the series converges

normally on Bm(1). If the conditions:
1) sup|z|≤1 |αk(z)| = c1 and sup|z|≤1 |βk(z)| = c2,

2)
∑∞

k=0 ||Pk||2L2(Sm−1) < ∞ and
∑∞

k=0 ||P̃k||2L2(Sm−1) < ∞,

are satisfied, the complexified series f(eitω) will belong to L+
2 (LSm−1).

If the nullsolutions of the Frobenius operator P (x, ∂) satisfy the requirements of the theorem,
one may consider the submodule H ⊂ L+

2 (LSm−1) containing the complexified nullsolutions:
H = kerP (z, ∂z) ∩ L+

2 (LSm−1). Due to the closedness of the operator P (z, ∂z) the submodule
is also closed and its reproducing kernel, for the inner product on L+

2 (LSm−1), can then be
obtained as the projection of the Cauchy–Hua kernel H(z, eitω) on H. The reproducing property
can then be restricted to the Euclidean unit ball Bm(1) leading to a reproducing kernel for
the Hilbert module of nullsolutions for the operator P (x, ∂) satisfying the requirements of the
theorem, for the inner product on the sphere Sm−1 induced by the inner product on L+

2 (LSm−1).
In particular we then also have that this module is a closed submodule of L2(Sm−1).

This will be applied in Section 5, when we construct a reproducing kernel for the function
space containing nullsolutions for the hyperbolic Dirac operator.

4 Function Theory on the Klein Ball
In view of the projective nature of the definition for the Dirac operator on the hyperbolic
unit ball, the Dirac operator on the Klein model can easily be obtained as follows: Putting
F (T, X) = λαF (x) with λ = T and x = X

T ∈ Bm(1), and choosing (λ, x) as new coordinates on
the FC, the projection of ∂X acting on α-homogeneous sections becomes the operator Dα(x),
defined by Dα(x) = ∂+ε(r∂r−α), acting on functions f(x) defined on Bm(1). Here, ∂ and r∂r,
respectively, stand for the Dirac operator and the Euler operator on Rm. Note that Dα(x) is of
the form P (x, ∂). Later, it will be shown that under certain restrictions on α it is an operator
of the Frobenius type.

In reference [16] the author has proved a theorem to construct hyperbolic monogenics on
the Klein ball. For this purpose, let us first define:
Definition 1 For an open subset ΩK ⊂ Bm(1) and an arbitrary α ∈ C we define the set of
hyperbolic monogenics in ΩK as H α

K (ΩK) = {f ∈ C1(ΩK) : Dα(x)f = 0}.
Definition 2 For an arbitrary complex α and an arbitrary integer l, we put

Mod(α, l, x) = F
(l)
1 (|x|2) +

l − α

2l + m
xεF

(l)
2 (|x|2),
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with

F
(l)
1 (t) = F

(
1 + l − α

2
,
l − α

2
; l +

m

2
; t

)
F

(l)
2 (t) = F

(
1 + l − α

2
, 1 +

l − α

2
; 1 + l +

m

2
; t

)
.

The following Theorems then hold:
Theorem 1 Let Pk(ξ) ∈ M+(k) and α ∈ C. We then have

Pα(x) = Mod(α, k, x)Pk(x) ∈ H α
K (Bm(1)).

Theorem 2 Let Qk(ξ) ∈ M−(k) and α ∈ C such that α + m /∈ −k − N. We then have
Qα(x) = Mod(α, 1 − k − m, x)Qk(x) ∈ H α

K (Bm(1) \ {0}).
These theorems allow us to derive the most important function-theoretical results for the

Dirac operator on the Klein ball from their counterparts in flat Euclidean space by modulation
(i.e. multiplication with the appropriate modulation factor). We give an overview of the most
important results, for which we refer to a recent series of papers (see e.g. [6], [7]).

The fundamental solution for the Dirac operator on the Klein ball is easily found as
Eα(x) = Mod(α, 1 − m; x)E(x),

and satisfies Dα(x)Eα(x) = −δ(x). To obtain a fundamental solution Eα(x, y) with singularity
for x = y one can not merely translate the argument, since the operator Dα(x) is not invariant
under translations. Instead, one has to reconsider the projective picture, apply a Lorentz
transformation and project back onto the Klein model. This gives rise to a fundamental solution
Eα(x, y) satisfying Dα(x)Eα(x, y) = −δ(x−y) = Eα(x, y)Dβ(y), where α+β+m = 0. A series
expansion for Eα(x, y) can easily be obtained by modulation of the classical decomposition for
the Cauchy kernel on Rm (see e.g. reference [2]):

E(y − x) = − 1
Am

∞∑
k=0

|y|k
|x|k+m−1

{
C

m
2

k (t)ξ − C
m
2

k−1(t)η
}

= − 1
Am

∞∑
k=0

|y|k
|x|k+m−1

Ck(ξ, η),

where x = |x|ξ and y = |y|η. This series converges for |y| < |x|. Because each term of the series
yields an inner spherical monogenic in the y-variable and an outer spherical monogenic in the
x-variable, Theorems 1 and 2 can be used to modulate E(y − x). We then obtain

Eα(y, x) =
1

Am

∞∑
k=0

E(k)
α (y, x) = − 1

Am

∞∑
k=0

Mod(α, k; y)
|y|kCk(ξ, η)
|x|k+m−1

Mod(β, 1 − k − m; x).

Consider then an open subset ΩK in Bm(1), and a compact CK ⊂ ΩK with smooth boundary
and interior in(CK). We have proved :
Theorem (Cauchy) Let f ∈ H α

K (ΩK). Then, for all y ∈ in(CK), we have∫
∂CK

Eα(y, x)σK(x, dx)f(x) = f(y),

with σK(x, dx) the oriented surface element on the Klein ball.
Theorem (Taylor) Let f(y) ∈ H α

K

(
Bm(r)

)
, α ∈ C and α + m /∈ −N. There exists

(f (k)(y))k∈N with y 	→f (k)(y) belonging to H α
K

(
Bm(1)

)
for each k, such that f(y)=

∑∞
k=0 f (k)(y).

The Taylor expansion for f(y) ∈ H α
K

(
Bm(r)

)
converges normally on compact sets Bm(ρ), with

|y| ≤ ρ < r. An explicit expression for f (k)(y) is given by

f (k)(y) = Mod(α, k; y)
|y|k
rk

P (k)[Mod(β, 1 − k − m; rξ)(rξε − 1)f(rξ)](η),

where P (k)[f ] denotes the projection of a function f ∈ L2(Sm−1) onto the space of inner
spherical monogenics.

The latter theorem will often be used in the following form: For f(y) ∈ H α
K

(
Bm(1)

)
there exists a sequence (Pk(η))k of inner spherical monogenics on Sm−1 such that f(y) =∑

k Mod(α, k; y)Pk(y).
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5 Hyperbolic Boundary Values
We begin this section by introducing a new function space MLα

2 (Sm−1) and constructing
examples by means of a Cauchy-type integral transform:
Definition 3 Let α be an arbitrary complex number. We put

MLα
2 (Sm−1) =

{
f ∈ L2(Sm−1) : f(ω) = lim

r→1
f∗(x), f∗ ∈ H α

K

(
Bm(1)

)}
,

i.e. MLα
2 (Sm−1) contains those functions in L2(Sm−1) which are the radial limits (in the

L2-sense) of hyperbolic monogenics on the Klein ball.
In a previous paper (see [17]) we have defined the so-called photogenic Cauchy transform of

a function f ∈ L2(Sm−1) as

C α
P [f ](x) =

1
Am

∫
Sm−1

Fα(x, ω)ωf(ω)dS(ω),

where Fα(x, ω) stands for the photogenic Cauchy kernel, the fundamental solution for the Dirac
operator on the hyperbolic Klein ball with singularity on the boundary:

Dα(x)Fα(x, ω) = −δ(x − ω), ω ∈ Sm−1.

Note that C α
P [f ](x) ∈ H α

K

(
Bm(1)

)
for all α ∈ C, whenever it is defined. In the very same paper,

the photogenic Cauchy transform of inner and outer spherical monogenics was determined. It
was found that

C α
P [Pk](x) = cα,m

Γ(α + m + k + 1)
2kΓ

(
k + m

2

) Mod(α, k; x)Pk(x),

C α
P [Qk](x) = −cα,m

(1 + α − k)Γ(α + m + k)
2kΓ

(
k + m

2

) Mod(α, k; x)Pk(x)ε, (1)

with cα,m a constant depending on α and m only. Defining the boundary values respectively
as the radial limits C α

P [Pk] ↑ (ξ) = limr→1− C α
P [Pk](rξ), C α

P [Qk] ↑ (ξ) = limr→1− C α
P [Qk](rξ),

we have found for arbitrary α such that Re(α) > 1−m
2 :

C α
P [Pk] ↑ (ξ) = Pα(Γ)Pk(ξ), C α

P [Qk] ↑ (ξ) = Pα(Γ)Qk(ξ),
where Pα(Γ) stands for the second-order differential operator on the sphere defined by

Pα(Γ) =
Γ

(
m−1

2

)
8π

m−1
2

((1 + β + Γ) + ξε(Γ + α))(β + Γ)(
α + m−1

2

) (
α + m+1

2

) ,

with α + β + m = 0. Note that for spherical monogenics Pk(ξ) and Qk(ξ) we get immediately
that C α

P [Pk] ↑ and C α
P [Qk] ↑ belong to MLα

2 (Sm−1).
On the other hand we have a mapping from the Sobolev space W2(Sm−1), defined by

W2(Sm−1) = {f : Lστf ∈ L2(Sm−1), |σ| = |τ | ≤ 2},
where Lστ = Lσ1τ1 · · ·Lσnτn

for multi-indices σ and τ ∈ Nn, into the space of L2-boundary
values of hyperbolic monogenics. This mapping is denoted by C α

P [·] ↑ and is defined by
C α

P [·] ↑ W2(Sm−1) 	→ MLα
2 (Sm−1), f(ξ) 	→ lim

r→1−
C α

P [f ](rξ).

This mapping is, however, not one-to-one, since it has a non-trivial kernel. This can easily be
seen as follows: In view of formula (1) it is clear that

C α
P [(1 + α − k)Pk + (α + m + k)ωεPk] = 0,

which, by means of the fact that Pk(ω) and Qk(ω) are eigenfunctions for the spherical Dirac
operator Γ with resp. eigenvalues (−k) and (k + m − 1), can be rewritten as

C α
P [(Γ + 1 + α)(1 + ωε)Pk] = 0.

Recalling the explicit definition for the photogenic Cauchy transform, and using the fact that
(1 + ωε) = (1 + ωε)ωε, we thus get that, for all k ∈ N,∫

Sm−1
Fα(x, ω)ω(Γ + 1 + α)(1 + ωε)Pk(ω)dS(ω) = 0

and also ∫
Sm−1

Fα(x, ω)ω(Γ + 1 + α)(1 + ωε)Qk(ω)dS(ω) = 0.
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Both integrals are indeed vanishing because the photogenic Cauchy kernel satisfies the following
differential equation in ω on the unit ball Bm(1):

{Γ(ω + ε) + (1 + α)(ω − ε) − (m − 1)ε}Fα(x, ω) = 0.

Eventually this means that

ker C α
P [·] ↑=

{
f ∈ W2(Sm−1) : f = (Γ + 1 + α)

∑
k

ck(1 + ωε)Pk(ω)
}
.

In view of the fact that the operator C α
P [·] ↑ is continuous for Re(α) > 1−m

2 , its kernel is closed
and therefore the domain of the mapping C α

P [·] ↑ can be defined as the orthogonal complement
of the kernel.

Note that in our paper [17] we have also given a meaning to the photogenic Cauchy transform
as an integral transform acting on distributions.

Consider then an arbitrary element f ∈ MLα
2 (Sm−1). By definition, we have f(ξ) =

limr→1− f(rξ), f(x) ∈ H α
K

(
Bm(1)

)
. As f(x) ∈ H α

K

(
Bm(1)

)
, it follows from Stokes’ theorem

that there exist inner spherical monogenics such that f(x) =
∑

k Mod(α, k; x)Pk(x). Hence, for
complex α with Re(α) > 1−m

2 we get f(ξ) =
∑

k Mod(α, k; ξ)Pk(ξ).

Remark This argument also shows that the function spaces MLα
2 (Sm−1) are trivial for

Re(α) ≤ 1−m
2 .

Note that the inverse only holds if α ∈ R. In other words, for real α > 1−m
2 we get

f(ξ) ∈ MLα
2 (Sm−1) ⇐⇒ f(ξ) =

∑
k

Mod(α, k; ξ)Pk(ξ).

For the proof of the inverse implication it suffices to put f̃(x) =
∑

k Mod(α, k; x)Pk(x), from
which it immediately follows that f(ξ) = limr→1 f̃(x). The series converges to f̃(x) for the
supremum norm on the unit ball Bm(1), which follows from an estimate derived a bit further
in the paper.

The aim is to prove that under certain restrictions on α, the function f(eitξ) belongs to the
Hilbert module L+

2 (LSm−1). The module MLα
2 (Sm−1) will then have a reproducing kernel,

obtained by projection of the Cauchy–Hua kernel, because the operator Dα(x) is a Frobenius
operator satisfying the additional requirements under certain conditions on α. First of all note
that the function f(z) is holomorphic in the Lie ball, which follows from Siciak’s theorem. To
examine the boundary behaviour of this holomorphic function, it thus suffices to consider the
extension of f(ξ) to the Lie sphere: f(eitξ) =

∑
k Mod(α, k; eitξ)Pk(eitξ). By definition we have

f(eitξ) ∈ L2(LSm−1) iff ‖f(eitξ)‖L2(LSm−1) < ∞, where the Lie norm is given by

1
π

∞∑
k=0

{∫ π

0

|F (k)
1 (e2it)|2dt −

∣∣∣∣ k − α

2k + m

∣∣∣∣
∫ π

0

|F (k)
2 (e2it)|2dt

}
‖Pk‖2

L2(Sm−1),

whence f(eitξ) ∈ L2(LSm−1) if both
1
π

( ∫ π

0

|F (k)
1 (e2it)|2dt‖Pk‖2

L2(Sm−1)

)
k

∈ l1 and
1
π

( ∫ π

0

|F (k)
2 (e2it)|2dt‖Pk‖2

L2(Sm−1)

)
k

∈ l1.

In view of the fact that f(ξ) =
∑

k Mod(α, k; ξ)Pk(ξ) ∈ L2(Sm−1), whence both
(|F (k)

1 (1)|2
‖Pk‖2

)
k

and
(|F (k)

2 (1)|2‖Pk‖2
)
k

belong to l1, it suffices to find conditions on α such that, for

all k ≥ k0, we have: 1
π

∫ π

0
|F (k)

j (e2it)|2dt ≤ |F (k)
j (1)|2, j ∈ {1, 2}. To do so, we use the following:

Let a, b and c be real such that c > b > 0, a > 0 and c − a − b > 0. We then have Euler’s
integral representation formula for the hypergeometric function F (a, b; c; eix):

F (a, b; c; eix) =
Γ(c)

Γ(c − b)Γ(b)

∫ 1

0

tb−1(1 − t)c−b−1(1 − teix)−adt.

From this, it easily follows that∣∣F (a, b; c; eix)
∣∣ ≤

∣∣∣∣ Γ(c)
Γ(c − b)Γ(b)

∣∣∣∣
∫ 1

0

∣∣tb−1(1 − t)c−b−1
∣∣ ∣∣(1 − teix)−a

∣∣ dt,
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which, in view of the fact that the parameters are real, reduces to∣∣F (a, b; c; eix)
∣∣ ≤ Γ(c)

Γ(c − b)Γ(b)

∫ 1

0

tb−1(1 − t)c−b−1
∣∣(1 − teix)

∣∣−a
dt.

As a > 0 and
∣∣1 − teix

∣∣ =
(
(1 + t2) − 2t cos x

) 1
2 ≥ 1 − t, we eventually find that∣∣F (a, b; c; eix)

∣∣ ≤ Γ(c)
Γ(c − b)Γ(b)

∫ 1

0

tb−1(1 − t)c−b−1(1 − t)−adt = F (a, b; c; 1).

In the present situation this means that for real α such that α > 1−m
2 , we have that f ∈

MLα
2 (Sm−1) =⇒ f ∈ L+

2 (LSm−1). This means that for these α the operator Dα(x) is a Frobe-
nius operator satisfying the requirements of the theorem mentioned at the end of Section 3.3,
from which it follows that a reproducing kernel can be constructed. Since f(z) ∈ L+

2 (LSm−1),
we get f(z) = 1

Amπ

∫ π

0

∫
Sm−1 H+(z, eitω)f(eitω)dS(ω)dt. Using the explicit formula for the

Cauchy–Hua kernel, we then get

f(rξ) =
1

Amπ

∞∑
k,l=0

∫ π

0

∫
Sm−1

(rξ)lrke−iktC∗
k(ξ, ω)(eitω)−lf(eitω)dS(ω)dt,

where θ = 〈ξ, ω〉 and C∗
k(ξ, ω) = C

m
2

k (θ)+ξωC
m
2

k−1(θ) = −ξC∗
k(ξ, ω) with x = rξ ∈ Bm(1). With

f(x) =
∑∞

q=0 Mod(α, q; x)Pq(x) we get for f(rξ), for all x ∈ Bm(1)
∞∑

q,k,l=0

rk+lξl

Amπ

∫ π

0

∫
Sm−1

ei(q−k−l)tC∗
k(ξ, ω)ω−lMod(α, q; eitω)Pq(ω)dS(ω)dt.

In view of the definition for the modulation factor, this reduces to the sum of two terms:

Σ1 =
∞∑

q,k,l=0

rk+lξl

Amπ

∫ π

0

ei(q−k−l)tF
(q)
1 (e2it)dt

∫
Sm−1

C∗
k(ξ, ω)ω−lPq(ω)dS(ω)

and

Σ2 =
∞∑

q,k,l=0

q − α

2q + m

rk+lξl

Amπ

∫ π

0

ei(1+q−k−l)tF
(q)
2 (e2it)dt

∫
Sm−1

C∗
k(ξ, ω)ω−lωεPq(ω)dS(ω).

Consider for example Σ1. Due to the orthogonality of spherical monogenics on the sphere and
the fact that C∗

k(ξ, ω) = C∗
k(ω, ξ), with C∗

k(ω, ξ) an inner spherical monogenic of order k, the
integral in ω differs from zero only if both l ∈ 2N and q = k. Hence,

Σ1 =
∞∑

k,l=0

rk+2l

Amπ

∫ π

0

e−2iltF
(k)
1 (e2it)dt

∫
Sm−1

Ck(ξ, ω)∗Pk(ω)dS(ω).

As ∫ π

0

e−2iltF
(k)
1 (e2it)dt =

∞∑
j=0

(
k−α

2

)
j

(
1+k−α

2

)
j

j!
(
k + m

2

)
j

∫ π

0

e−2i(j−l)tdt,

the sumation in l disappears, and only the term for which j = l remains. This leads to

Σ1 =
∞∑

k=0

rk

Am
F

(k)
1 (r2)

∫
Sm−1

C∗
k(ξ, ω)Pk(ω)dS(ω).

In a completely similar way, we arrive at

Σ2 =
∞∑

k=0

k − α

2k + m

r1+k

Am
F

(k)
2 (r2)ξε

∫
Sm−1

C∗
k(ξ, ω)Pk(ω)dS(ω),

from which it then immediately follows that f(rξ) =
∑∞

k=0 Mod(α, k; rξ)Pk(rξ), as is to be
expected!

We then propose the following form for the reproducing kernel Kα(x, ω) for the module
MLα

2 (Sm−1), in the case α > 1−m
2 :

Kα(ω, x) =
∞∑

k=0

rk
Mod(α, k; rξ)C∗

k(ξ, ω)Mod(α, k; ω)

|F (k)
1 (1)|2 − |F (k)

2 (1)|2
.
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This kernel satisfies the necessary conditions.
In view of its very own definition, we have Kα(x, y) = Kα(y, x), which is the property of

anti-symmetry.
The kernel Kα(ξ, ω) belongs to the module MLα

2 (Sm−1).
It has the reproducing property:∫

Sm−1
Kα(rξ, ω)f(ω)dS(ω) =

∞∑
l=0

∫
Sm−1

Kα(rξ, ω)Mod(α, l; ω)Pl(ω)dS(ω),

which by means of the orthogonality of spherical monogenics on the sphere reduces to∫
Sm−1

Kα(rξ, ω)f(ω)dS(ω) = f(rξ).

This leads to
Theorem For real α such that α > 1−m

2 , the space MLα
2 (Sm−1) is a Hilbert module with

reproducing kernel, given by Kα(ω, ξ) =
∑∞

k=0

Mod(α,k;ξ)Ck(ξ,ω)Mod(α,k;ω)

|F (k)
1 (1)|2−|F (k)

2 (1)|2 .

Remark Note that for α = k the reproducing kernel Kk(ω, ξ) reduces to the classical Szego

kernel Kk(ω, ξ) =
∑∞

k=0 C∗
k(ξ, ω) =

1+ξω

|1+ξω|m . Hence, the reproducing kernel for the space of
hyperbolic monogenics on the Klein ball can again be found as a modulation of the “classi-
cal” kernel for the Dirac operator on the flat Euclidean space Rm, albeit only under certain
restrictions on the parameter α.
Remark The authors would like to express their gratitude to the referee for his valuable
suggestions.
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