α=0时, 该方程退化为非线性随机微分方程, 所获结论与现有文献中的相关结论是一致的; 当α ≠ 0, 且初值条件为齐次时, 所获结论可视为现有文献中线性随机分数阶微分方程情形的推广和改进. 随后, 文末的数值试验验证了所获理论结果的正确性.","endNoteUrl_en":"https://chinamath.cjoe.ac.cn/qkw/jssx/EN/article/getTxtFile.do?fileType=EndNote&id=48640","reference":"[1] Anh V V, Mcvinish R. Fractional differential equations driven by Lévy noise[J]. J. Appl. Math. Stoch. Anal., 2003, 16(2):97-119.
[2] Jumarie G. Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions[J]. Appl. Math. Model., 2008, 32(5):836-859.
[3] Sakthivel R, Revathi P, Anthoni S M. Existence of pseudo almost automorphic mild solutions to stochastic fractional differential equations[J]. Nonlinear Anal., 2012, 75(7):3339-3347.
[4] Sakthivel R, Revathi P, Ren Y. Existence of solutions for nonlinear fractional stochastic differential equations[J]. Nonlinear Analysis:Theory, Methods & Applications, 2013, 81:70-86.
[5] Benchaabane A, Sakthivel R. Sobolev-type fractional stochastic differential equations with nonLipschitz coefficients[J]. J. Comput. Appl. Math., 2017, 312:65-73.
[6] 黄鹤皋. 几类随机问题解的存在唯一性与Milstein方法的均方稳定性[D]. 湘潭大学硕士论文, 2013.
[7] 王文强, 孙晓莉. 一类随机分数阶微分方程隐式Euler方法的弱收敛性与弱稳定性[J]. 数值计算与计算机应用, 2014, 35(2):153-162.
[8] 王文强, 孙晓莉. 线性随机分数阶微分方程Euler方法的弱收敛性与弱稳定性[J]. 计算数学, 2014, 36(2):195-204.
[9] 鄢志平. 两类随机微分方程数值方法的强收敛性分析[D]. 湘潭大学硕士论文, 2015.
[10] Kamrani M. Numerical solution of stochastic fractional differential equations[J]. Numer. Algor., 2015, 68(1):81-93.
[11] Kamrani M. Convergence of Galerkin method for the solution of stochastic fractional integro differential equations[J]. Optik, 2016, 127(20):10049-10057.
[12] Dai X, Bu W, Xiao A. Well-posedness and EM approximation for nonlinear stochastic fractional integro-differential equations with weakly singular kernels[J]. J. Comput. Appl. Math., 2019, 356:377-390.
[13] 毛文亭, 王文强, 林伟贤. 一类带乘性噪声随机分数阶微分方程Euler方法的弱收敛性与弱稳定性[J]. 计算数学, 2016, 38(4):442-452.
[14] Mao X. Stochastic differential equations and applications[M]. UK:Horwood Publishing Limited, 1997.
[15] Wu Q. A new type of the Gronwall-Bellman inequality and its application to fractional stochastic differential equations[J]. Cogent Math., 2015.
[16] Podlubny I. Fractional differential equations[M]. San Diego:Academic Press, 1999.
[17] Kuo H H. Introduction to stochastic integration[M]. Springer Science and Business Media, 2006.
[18] 孙志忠, 高广花. 分数阶微分方程的有限差分方法[M]. 北京:科学出版社, 2015.
[19] Kloeden P E, Platen E. Numerical solution of stochastic differential equations[M]. Berlin:Springer-Verlag, 1992.
[20] 毛文亭, 张维, 王文强. 一类带乘性噪声随机分数阶微分方程数值方法的弱收敛性与弱稳定性[J]. 数值计算与计算机应用, 2018, 39(3):161-171.","bibtexUrl_cn":"https://chinamath.cjoe.ac.cn/qkw/jssx/CN/article/getTxtFile.do?fileType=BibTeX&id=48640","abstractUrl_en":"https://chinamath.cjoe.ac.cn/qkw/jssx/EN/10.12286/jssx.j2019-0587","qi":"1","id":48640,"nian":2021,"bianHao":"1612405295414-231758780","zuoZheEn_L":"Zhu Mengjiao, Wang Wenqiang","juanUrl_en":"https://chinamath.cjoe.ac.cn/qkw/jssx/EN/Y2021","qiShiYe":"87","received":"2019-04-18","qiUrl_cn":"https://chinamath.cjoe.ac.cn/qkw/jssx/CN/Y2021/V43/I1","lanMu_cn":"论文","pdfSize":"533","zuoZhe_CN":"朱梦姣, 王文强","risUrl_cn":"https://chinamath.cjoe.ac.cn/qkw/jssx/CN/article/getTxtFile.do?fileType=Ris&id=48640","title_cn":"非线性随机分数阶微分方程Euler方法的弱收敛性","doi":"10.12286/jssx.j2019-0587","jieShuYe":"109","keywordList_en":["Nonlinear stochastic fractional differential equations","Existence and uniqueness of solutions","Euler method","Weak convergence","Caputo derivative"],"endNoteUrl_cn":"https://chinamath.cjoe.ac.cn/qkw/jssx/CN/article/getTxtFile.do?fileType=EndNote&id=48640","zhaiyao_en":"This paper is concerned with the existence and uniqueness of solutions for nonlinear stochastic fractional differential equations and the weak convergence of Euler method constructed for solving the equations when they satisfy certain constraints. Especially, when fractional order α = 0, the equations are degenerated to nonlinear stochastic differential equations, and the conclusions obtained from this paper are consisted with the relevant results; when α ≠ 0 and the initial condition is homogeneous, the conclusions can be regarded as the generalization and improvement of linear stochastic fractional differential equations in the existing literature. Finally, numerical examples illustrate the effectiveness of the theoretical results.","bibtexUrl_en":"https://chinamath.cjoe.ac.cn/qkw/jssx/EN/article/getTxtFile.do?fileType=BibTeX&id=48640","abstractUrl_cn":"https://chinamath.cjoe.ac.cn/qkw/jssx/CN/10.12286/jssx.j2019-0587","zuoZheCn_L":"朱梦姣, 王文强","juanUrl_cn":"https://chinamath.cjoe.ac.cn/qkw/jssx/CN/Y2021","lanMu_en":"","qiUrl_en":"https://chinamath.cjoe.ac.cn/qkw/jssx/EN/Y2021/V43/I1","zuoZhe_EN":"Zhu Mengjiao, Wang Wenqiang","risUrl_en":"https://chinamath.cjoe.ac.cn/qkw/jssx/EN/article/getTxtFile.do?fileType=Ris&id=48640","title_en":"THE WEAK CONVERGENCE OF EULER METHOD FOR NONLINEAR STOCHASTIC FRACTIONAL DIFFERENTIAL EQUATIONS","hasPdf":"true"}}"/>

THE WEAK CONVERGENCE OF EULER METHOD FOR NONLINEAR STOCHASTIC FRACTIONAL DIFFERENTIAL EQUATIONS

Zhu Mengjiao, Wang Wenqiang

Mathematica Numerica Sinica ›› 2021, Vol. 43 ›› Issue (1) : 87-109.

PDF(533 KB)
PDF(533 KB)
Mathematica Numerica Sinica ›› 2021, Vol. 43 ›› Issue (1) : 87-109. DOI: 10.12286/jssx.j2019-0587

THE WEAK CONVERGENCE OF EULER METHOD FOR NONLINEAR STOCHASTIC FRACTIONAL DIFFERENTIAL EQUATIONS

    {{javascript:window.custom_author_en_index=0;}}
  • {{article.zuoZhe_EN}}
Author information +
History +

HeighLight

{{article.keyPoints_en}}

Abstract

{{article.zhaiyao_en}}

Key words

QR code of this article

Cite this article

Download Citations
{{article.zuoZheEn_L}}. {{article.title_en}}. Mathematica Numerica Sinica, 2021, 43(1): 87-109 https://doi.org/10.12286/jssx.j2019-0587

References

References

{{article.reference}}

Funding

RIGHTS & PERMISSIONS

{{article.copyrightStatement_en}}
{{article.copyrightLicense_en}}
PDF(533 KB)

Accesses

Citation

Detail

Sections
Recommended

/