POLYGONAL DISCONTINUOUS GALERKIN METHODS ON CURVED REGIONS AND ITS MULTIGRID PRECONDITIONER

Liu Yi, Wang Yanqiu

Mathematica Numerica Sinica ›› 2022, Vol. 44 ›› Issue (3) : 396-421.

PDF(27095 KB)
PDF(27095 KB)
Mathematica Numerica Sinica ›› 2022, Vol. 44 ›› Issue (3) : 396-421. DOI: 10.12286/jssx.j2021-0792
Articles

POLYGONAL DISCONTINUOUS GALERKIN METHODS ON CURVED REGIONS AND ITS MULTIGRID PRECONDITIONER

  • Liu Yi, Wang Yanqiu
Author information +
History +

Abstract

The main purpose of this paper is to study the discontinuous Galerkin discretization of second-order elliptic partial differential equations on curved regions. We use multiple short edges to approximate the curved boundary and achieve the optimal convergence order in H1 norm for high-order elements. This method is also applied to the interface problem with curved interfaces and obtains the optimal convergence of high-order elements. Furthermore, we prove that the W-cycle and V-cycle multigrid preconditioners converge uniformly provided that the number of smoothing is sufficiently large. Finally, numerical results are presented to verify the correctness of the theoretical results.

Key words

curved boundary / curved interface / polygonal mesh / interior penalty discontinuous Galerkin method / multigrid

Cite this article

Download Citations
Liu Yi, Wang Yanqiu. POLYGONAL DISCONTINUOUS GALERKIN METHODS ON CURVED REGIONS AND ITS MULTIGRID PRECONDITIONER. Mathematica Numerica Sinica, 2022, 44(3): 396-421 https://doi.org/10.12286/jssx.j2021-0792

References

[1] Blair J. Bounds for the change in the solutions of second order elliptic PDE's when the boundary is perturbed[J]. SIAM Journal on Applied Mathematics, 1973, 24(3):277-285.
[2] Strang G, Berger A E. The change in solution due to change in domain[C]//Partial differential equations. 1973:199-205.
[3] Thomée V. Polygonal domain approximation in Dirichlet's problem[J]. IMA Journal of Applied Mathematics, 1973, 11(1):33-44.
[4] Ergatoudis I, Irons B, Zienkiewicz O. Curved, isoparametric, quadrilateral elements for finite element analysis[J]. International Journal of Solids and Structures, 1968, 4(1):31-42.
[5] Lenoir M. Optimal isoparametric finite elements and error estimates for domains involving curved boundaries[J]. SIAM Journal on Numerical Analysis, 1986, 23(3):562-580.
[6] Cottrell J A, HUGHES T J, BAZILEVS Y. Isogeometric analysis:toward integration of CAD and FEA[M].[S.l.]:John Wiley&Sons, 2009.
[7] Hughes T J, Cottrell J A, Bazilevs Y. Isogeometric analysis:CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39-41):4135-4195.
[8] Da Veiga L B, Russo A, Vacca G. The virtual element method with curved edges[J]. ESAIM:Mathematical Modelling and Numerical Analysis, 2019, 53(2):375-404.
[9] Cockburn B, Solano M. Solving Dirichlet boundary-value problems on curved domains by extensions from subdomains[J]. SIAM Journal on Scientific Computing, 2012, 34(1):A497-A519.
[10] Cheung J, Perego M, Bochev P, et al. Optimally accurate higher-order finite element methods for polytopial approximations of domains with smooth boundaries[J]. Mathematics of Computation, 2019, 88(319):2187-2219.
[11] 叶朵.曲边区域上的内罚间断有限元方法[J].硕士论文南京师范大学数学科学学院2020.
[12] Reed W H, Hill T. Triangular mesh methods for the neutron transport equation[J]. Los Alamos Report LA-UR-73-479, 1973.
[13] Arnold D N. An interior penalty finite element method with discontinuous elements[J]. SIAM Journal on Numerical Analysis, 1982, 19(4):742-760.
[14] Arnold D N, Brezzi F, Cockburn B, et al. Unified analysis of discontinuous Galerkin methods for elliptic problems[J]. SIAM Journal on Numerical Analysis, 2002, 39(5):1749-1779.
[15] Cangiani A, Georgoulis E H, Houston P. hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes[J]. Mathematical Models and Methods in Applied Sciences, 2014, 24(10):2009-2041.
[16] Gopalakrishnan J, Kanschat G. A multilevel discontinuous Galerkin method[J]. Numerische Mathematik, 2003, 95(3):527-550.
[17] Brenner S C, Zhao J. Convergence of multigrid algorithms for interior penalty methods[J]. Applied Numerical Analysis&Computational Mathematics, 2005, 2(1):3-18.
[18] Antonietti P F, Houston P, Hu X, et al. Multigrid algorithms for hp-version interior penalty discontinuous Galerkin methods on polygonal and polyhedral meshes[J]. Calcolo, 2017, 54(4):1169-1198.
[19] Antonietti P F, Pennesi G. V-cycle multigrid algorithms for discontinuous Galerkin methods on non-nested polytopic meshes[J]. Journal of Scientific Computing, 2019, 78(1):625-652.
[20] Mu L, Wang X, Wang Y. Shape regularity conditions for polygonal/polyhedral meshes, exemplified in a discontinuous Galerkin discretization[J]. Numerical Methods for Partial Differential Equations, 2015, 31(1):308-325.
[21] Adams R A, Fournier J J. Sobolev spaces[M].[S.l.]:Elsevier, 2003.
[22] Brenner S, Scott R. The mathematical theory of finite element methods:Vol 15[M].[S.l.]:Springer Science&Business Media, 2007.
[23] Bramble J H, King J T. A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries[J]. Mathematics of Computation, 1994, 63(207):1-17.
[24] Brenner S C. Poincaré-Friedrichs inequalities for piecewise H1 functions[J]. SIAM Journal on Numerical Analysis, 2003, 41(1):306-324.
[25] Bramble J H, Pasciak J E, Xu J. The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms[J]. Mathematics of Computation, 1991, 56(193):1-34.
[26] Bramble J H, Pasciak J E. New convergence estimates for multigrid algorithms[J]. Mathematics of Computation, 1987, 49(180):311-329.
[27] Bramble J H, Pasciak J E. The analysis of smoothers for multigrid algorithms[J]. Mathematics of Computation, 1992, 58(198):467-488.
PDF(27095 KB)

708

Accesses

0

Citation

Detail

Sections
Recommended

/