• Original Articles • Previous Articles     Next Articles

ON EXTRAPOLATION CASCADIC MULTIGRID METHOD

Chuanmiao Chen1, Zhong-Ci Shi2, Hongling Hu1   

  1. 1. Institute of Computation, Hunan Normal University, Changsha 410081, China;
    2. LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,Beijing 100190, China
  • Received:2011-02-19 Revised:2011-05-05 Online:2011-11-15 Published:2011-11-15

Chuanmiao Chen, Zhong-Ci Shi, Hongling Hu. ON EXTRAPOLATION CASCADIC MULTIGRID METHOD[J]. Journal of Computational Mathematics, 2011, 29(6): 684-697.

Based on an asymptotic expansion of (bi)linear finite elements, a new extrapolation formula and extrapolation cascadic multigrid method (EXCMG) are proposed. The key ingredients of the proposed methods are some new extrapolations and quadratic interpolations, which are used to provide better initial values on the refined grid. In the case of triple grids, the errors of the new initial values are analyzed in detail. The numerical experiments show that EXCMG has higher accuracy and efficiency.

CLC Number: 

[1] R.P. Fedorenko, The speed of convergence of one iterative process, USSR Comput. Math. Math.Phys., 4 (1964), 1092–1096.

[2] A. Brandt, Multi-level adaptive solution to boundary value problems, Math. Comput., 31 (1977),333-391.

[3] R. Bank, T. Dupont, An optimal order process for solving finite element equations, Math. Comput.,36 (1981), 35–51.

[4] J. Bramble, Multigrid Methods, Pitman Research Notes in Math. v.294, Wiley, 1993.

[5] F. Bornemann, P. Deufhard, The cascadic multigrid method for elliptic problems, Numer. Math.,75 (1996), 135-152.

[6] V. Shaydurov, Some estimates of the rate of convergence for the cascadic conjugate-gradient method, Comput. Math. Appl., 31 (1996), 161-171.

[7] V. Shaydurov, L. Tobiska, The convergence of the cascadic conjugate-gradient method applied to elliptic problems in domains with re-entrant corners, Math. Comput., 69 (1999), 501–520.

[8] Z.C. Shi, X.J. Xu, Cascadic multigrid method for the second order elliptic problem, East-West J.Numer. Math., 6 (1998), 309-318; 7 (1999), 199-209.

[9] Z.C. Shi, X.J. Xu, A new cascadic multigrid, Science in China (Series A), 44:1 (2001), 21-30.

[10] Z.C. Shi, X.J. Xu, Y.Q. Huang, Economical cascadic multigrid method (ECMG), Science in China.Ser. A-Math., 37:9 (2007), 1083-1098.

[11] Z.C. Shi, X.J. Xu, Cascadic multigrid method for the plate bending problem, East-West J Numer Math., 6 (1998), 137–153.

[12] R. Stevenson, Nonconforming finite elements and the cascadic multi-grid method, Numer. Math.,91 (2002), 351–387.

[13] Z.C. Shi, X.J. Xu, H.Y. Man, Cascadic multigrid for the finite volume methods for elliptic problems,J. Comput. Math., 22:6 (2004), 905–920.

[14] G. Timmermann, A cascadic multigrid algorithm for semilinear elliptic problems, Numer. Math.,86 (2000), 717–731.

[15] Y,Q. Huang, Z.C. Shi, T. Tang, W.M. Xue, A multilevel successive iteration method for nonlinear elliptic problems, Math. Comput., 73 (2004), 525–539.

[16] S.Z. Zhou, H.X. Hu, On the convergence of a cascadic multigrid method for semilinear elliptic problem, Appl. Math. Comput., 159:2 (2004), 407–417.

[17] V. Shaidurov, G. Timmermann, A cascadic multigrid algorithm for semilinear indefinite elliptic problems, Computing, 64 (2000), 349–366.

[18] Z.C. Shi, X.J. Xu, Cascadic multigrid method for Parabolic problems, J. Comput. Math., 18(2000), 551–560.

[19] Q. Du, P.B. Ming, Cascadic multigrid methods for parabolic problems, Science in China Series A, 51:8 (2008), 1415–1439.

[20] C.M. Chen, Z.Q. Xie, C.L. Li, H.L. Hu, Study of a new extrapolation cascadic multigrid method(in English), Natur. Sci. J. Hunan Normal University, 30:2 (2007), 1-5.

[21] C.M. Chen, H.L. Hu, Z.Q. Xie, C.L. Li, Analysis of extrapolation cascadic multigrid method(EXCMG), Science in China. Series A:Math., 51 (2008), 1349-1360.

[22] C.M. Chen, H.L. Hu, Z.Q. Xie, L2-error of extrapolation cascadic multigrid method (EXCMG),Acta Mathematica Scientia, Series B, 29:3 (2009), 539551.

[23] G. Marchuk, V. Shaidurov, Difference Methods and Their extrapolation, Berlin:Springer, 1983.

[24] Q. Lin, T. Lu, S.M. Shen, Maximum norm estimate, extrapolation and optimal point of stresses for finite element methods on strongly regular triangulation, J. Comput. Math., 1 (1983), 376-383.

[25] Q. Lin, J.C. Xu, Linear finite elements with high accuracy, J. Comput. Math., 3 (1985), 115-133.

[26] C.M. Chen, Q. Lin, Extrapolation of finite element approximation in a rectangular domain, J.Comput. Math., 7 (1989), 227-233.

[27] C.M. Chen, Y.Q. Huang, Extrapolation of triangular linear elements in general domain, Numer.Math. Chinese Universities, 11 (1989), 1-16.

[28] Q. Lin, N.N. Yan. Construction and analysis of efficient finite elements, (in Chinese), Hebei Univ.Press, Baoding, 1996, 1-304.

[29] J. Douglas, T. Dupont, Galerkin approximations for the two-point boundary problem using continuous,piecewise polynomial spaces, Numer. Math., 22 (1974), 99-109.

[30] J. Douglas, T. Dupont and M.F. Wheeler, An L1 estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials, RAIRO Model. Math. Anal. Numer., 8 (1974), 61-66.

[31] M. Zlamal, Some superconvergence results in the finite element method, Lecture Notes in Math.,606, Springer, 1977, 353-362.

[32] C.M. Chen, Optimal points of the stresses approximated by triangular linear element in FEM, (in Chinese) J. Xiangtan Univ., 1 (1978), 77-90.

[33] C.M. Chen. Superconvergence of finite element solution and its derivatives (in Chinese), Numer.Math. J. Univ., 3:2 (1981), 118-125, MR.82m:65100.

[34] C.M. Chen, Element Analysis method and superconvergence, in:“Finite Element Methods”,Lecture Notes in Pure and Applied Mathematics, Vol.196, Marcel Dekker, 1998, pp.71-84.

[35] C.M. Chen, Superconvergence results in finite element analysis, Surveys on Math. for Industry,11 (2005), 131-157.

[36] C.M. Chen, Y.Q. Huang, High Accuracy Theory of Finite Elements (in Chinese), Hunan Science and Technique Press, Changsha, 1995, 1-638.

[37] C.M. Chen, Structure Theory of Superconvergence of Finite Elements (in Chinese) Hunan Science and Technique Press, Changsha, 2001, 1-464.
[1] Baiying Dong, Xiufeng Feng, Zhilin Li. AN L SECOND ORDER CARTESIAN METHOD FOR 3D ANISOTROPIC INTERFACE PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(6): 882-912.
[2] Bei Zhang, Jikun Zhao, Minghao Li, Hongru Chen. STABILIZED NONCONFORMING MIXED FINITE ELEMENT METHOD FOR LINEAR ELASTICITY ON RECTANGULAR OR CUBIC MESHES [J]. Journal of Computational Mathematics, 2022, 40(6): 865-881.
[3] Yanping Chen, Qiling Gu, Qingfeng Li, Yunqing Huang. A TWO-GRID FINITE ELEMENT APPROXIMATION FOR NONLINEAR TIME FRACTIONAL TWO-TERM MIXED SUB-DIFFUSION AND DIFFUSION WAVE EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(6): 936-954.
[4] Tianliang Hou, Chunmei Liu, Chunlei Dai, Luoping Chen, Yin Yang. TWO-GRID ALGORITHM OF H1-GALERKIN MIXED FINITE ELEMENT METHODS FOR SEMILINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(5): 667-685.
[5] Kai Wang, Na Wang. ANALYSIS OF A FULLY DISCRETE FINITE ELEMENT METHOD FOR PARABOLIC INTERFACE PROBLEMS WITH NONSMOOTH INITIAL DATA [J]. Journal of Computational Mathematics, 2022, 40(5): 777-793.
[6] Linshuang He, Minfu Feng, Qiang Ma. PENALTY-FACTOR-FREE STABILIZED NONCONFORMING FINITE ELEMENTS FOR SOLVING STATIONARY NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(5): 728-755.
[7] Huan Liu, Xiangcheng Zheng, Hongfei Fu. ANALYSIS OF A MULTI-TERM VARIABLE-ORDER TIME-FRACTIONAL DIFFUSION EQUATION AND ITS GALERKIN FINITE ELEMENT APPROXIMATION [J]. Journal of Computational Mathematics, 2022, 40(5): 814-834.
[8] Hanzhang Hu, Yanping Chen. A CHARACTERISTIC MIXED FINITE ELEMENT TWO-GRID METHOD FOR COMPRESSIBLE MISCIBLE DISPLACEMENT PROBLEM [J]. Journal of Computational Mathematics, 2022, 40(5): 794-813.
[9] Abdelhamid Zaghdani, Sayed Sayari, Miled EL Hajji. A NEW HYBRIDIZED MIXED WEAK GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS* [J]. Journal of Computational Mathematics, 2022, 40(4): 499-516.
[10] Xinjiang Chen, Yanqiu Wang. A CONFORMING QUADRATIC POLYGONAL ELEMENT AND ITS APPLICATION TO STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(4): 624-648.
[11] Xiaonian Long, Qianqian Ding. A SECOND ORDER UNCONDITIONALLY CONVERGENT FINITE ELEMENT METHOD FOR THE THERMAL EQUATION WITH JOULE HEATING PROBLEM [J]. Journal of Computational Mathematics, 2022, 40(3): 354-372.
[12] Noelia Bazarra, José R. Fernández, MariCarme Leseduarte, Antonio Magaña, Ramón Quintanilla. NUMERICAL ANALYSIS OF A PROBLEM INVOLVING A VISCOELASTIC BODY WITH DOUBLE POROSITY [J]. Journal of Computational Mathematics, 2022, 40(3): 415-436.
[13] Ram Manohar, Rajen Kumar Sinha. ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(2): 147-176.
[14] Jiajie Li, Shengfeng Zhu. ON DISTRIBUTED H1 SHAPE GRADIENT FLOWS IN OPTIMAL SHAPE DESIGN OF STOKES FLOWS: CONVERGENCE ANALYSIS AND NUMERICAL APPLICATIONS [J]. Journal of Computational Mathematics, 2022, 40(2): 231-257.
[15] Weijie Huang, Wei Jiang, Yan Wang. A θ-L APPROACH FOR SOLVING SOLID-STATE DEWETTING PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(2): 275-293.
Viewed
Full text


Abstract