• Original Articles • Previous Articles Next Articles
Chuanmiao Chen1, Zhong-Ci Shi2, Hongling Hu1
Chuanmiao Chen, Zhong-Ci Shi, Hongling Hu. ON EXTRAPOLATION CASCADIC MULTIGRID METHOD[J]. Journal of Computational Mathematics, 2011, 29(6): 684-697.
[1] R.P. Fedorenko, The speed of convergence of one iterative process, USSR Comput. Math. Math.Phys., 4 (1964), 1092–1096.[2] A. Brandt, Multi-level adaptive solution to boundary value problems, Math. Comput., 31 (1977),333-391.[3] R. Bank, T. Dupont, An optimal order process for solving finite element equations, Math. Comput.,36 (1981), 35–51.[4] J. Bramble, Multigrid Methods, Pitman Research Notes in Math. v.294, Wiley, 1993.[5] F. Bornemann, P. Deufhard, The cascadic multigrid method for elliptic problems, Numer. Math.,75 (1996), 135-152.[6] V. Shaydurov, Some estimates of the rate of convergence for the cascadic conjugate-gradient method, Comput. Math. Appl., 31 (1996), 161-171.[7] V. Shaydurov, L. Tobiska, The convergence of the cascadic conjugate-gradient method applied to elliptic problems in domains with re-entrant corners, Math. Comput., 69 (1999), 501–520.[8] Z.C. Shi, X.J. Xu, Cascadic multigrid method for the second order elliptic problem, East-West J.Numer. Math., 6 (1998), 309-318; 7 (1999), 199-209.[9] Z.C. Shi, X.J. Xu, A new cascadic multigrid, Science in China (Series A), 44:1 (2001), 21-30.[10] Z.C. Shi, X.J. Xu, Y.Q. Huang, Economical cascadic multigrid method (ECMG), Science in China.Ser. A-Math., 37:9 (2007), 1083-1098.[11] Z.C. Shi, X.J. Xu, Cascadic multigrid method for the plate bending problem, East-West J Numer Math., 6 (1998), 137–153.[12] R. Stevenson, Nonconforming finite elements and the cascadic multi-grid method, Numer. Math.,91 (2002), 351–387.[13] Z.C. Shi, X.J. Xu, H.Y. Man, Cascadic multigrid for the finite volume methods for elliptic problems,J. Comput. Math., 22:6 (2004), 905–920.[14] G. Timmermann, A cascadic multigrid algorithm for semilinear elliptic problems, Numer. Math.,86 (2000), 717–731.[15] Y,Q. Huang, Z.C. Shi, T. Tang, W.M. Xue, A multilevel successive iteration method for nonlinear elliptic problems, Math. Comput., 73 (2004), 525–539.[16] S.Z. Zhou, H.X. Hu, On the convergence of a cascadic multigrid method for semilinear elliptic problem, Appl. Math. Comput., 159:2 (2004), 407–417.[17] V. Shaidurov, G. Timmermann, A cascadic multigrid algorithm for semilinear indefinite elliptic problems, Computing, 64 (2000), 349–366.[18] Z.C. Shi, X.J. Xu, Cascadic multigrid method for Parabolic problems, J. Comput. Math., 18(2000), 551–560.[19] Q. Du, P.B. Ming, Cascadic multigrid methods for parabolic problems, Science in China Series A, 51:8 (2008), 1415–1439.[20] C.M. Chen, Z.Q. Xie, C.L. Li, H.L. Hu, Study of a new extrapolation cascadic multigrid method(in English), Natur. Sci. J. Hunan Normal University, 30:2 (2007), 1-5.[21] C.M. Chen, H.L. Hu, Z.Q. Xie, C.L. Li, Analysis of extrapolation cascadic multigrid method(EXCMG), Science in China. Series A:Math., 51 (2008), 1349-1360.[22] C.M. Chen, H.L. Hu, Z.Q. Xie, L2-error of extrapolation cascadic multigrid method (EXCMG),Acta Mathematica Scientia, Series B, 29:3 (2009), 539551.[23] G. Marchuk, V. Shaidurov, Difference Methods and Their extrapolation, Berlin:Springer, 1983.[24] Q. Lin, T. Lu, S.M. Shen, Maximum norm estimate, extrapolation and optimal point of stresses for finite element methods on strongly regular triangulation, J. Comput. Math., 1 (1983), 376-383.[25] Q. Lin, J.C. Xu, Linear finite elements with high accuracy, J. Comput. Math., 3 (1985), 115-133.[26] C.M. Chen, Q. Lin, Extrapolation of finite element approximation in a rectangular domain, J.Comput. Math., 7 (1989), 227-233.[27] C.M. Chen, Y.Q. Huang, Extrapolation of triangular linear elements in general domain, Numer.Math. Chinese Universities, 11 (1989), 1-16.[28] Q. Lin, N.N. Yan. Construction and analysis of efficient finite elements, (in Chinese), Hebei Univ.Press, Baoding, 1996, 1-304.[29] J. Douglas, T. Dupont, Galerkin approximations for the two-point boundary problem using continuous,piecewise polynomial spaces, Numer. Math., 22 (1974), 99-109.[30] J. Douglas, T. Dupont and M.F. Wheeler, An L1 estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials, RAIRO Model. Math. Anal. Numer., 8 (1974), 61-66.[31] M. Zlamal, Some superconvergence results in the finite element method, Lecture Notes in Math.,606, Springer, 1977, 353-362.[32] C.M. Chen, Optimal points of the stresses approximated by triangular linear element in FEM, (in Chinese) J. Xiangtan Univ., 1 (1978), 77-90.[33] C.M. Chen. Superconvergence of finite element solution and its derivatives (in Chinese), Numer.Math. J. Univ., 3:2 (1981), 118-125, MR.82m:65100.[34] C.M. Chen, Element Analysis method and superconvergence, in:“Finite Element Methods”,Lecture Notes in Pure and Applied Mathematics, Vol.196, Marcel Dekker, 1998, pp.71-84.[35] C.M. Chen, Superconvergence results in finite element analysis, Surveys on Math. for Industry,11 (2005), 131-157.[36] C.M. Chen, Y.Q. Huang, High Accuracy Theory of Finite Elements (in Chinese), Hunan Science and Technique Press, Changsha, 1995, 1-638.[37] C.M. Chen, Structure Theory of Superconvergence of Finite Elements (in Chinese) Hunan Science and Technique Press, Changsha, 2001, 1-464. |
[1] | Baiying Dong, Xiufeng Feng, Zhilin Li. AN L∞ SECOND ORDER CARTESIAN METHOD FOR 3D ANISOTROPIC INTERFACE PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(6): 882-912. |
[2] | Bei Zhang, Jikun Zhao, Minghao Li, Hongru Chen. STABILIZED NONCONFORMING MIXED FINITE ELEMENT METHOD FOR LINEAR ELASTICITY ON RECTANGULAR OR CUBIC MESHES [J]. Journal of Computational Mathematics, 2022, 40(6): 865-881. |
[3] | Yanping Chen, Qiling Gu, Qingfeng Li, Yunqing Huang. A TWO-GRID FINITE ELEMENT APPROXIMATION FOR NONLINEAR TIME FRACTIONAL TWO-TERM MIXED SUB-DIFFUSION AND DIFFUSION WAVE EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(6): 936-954. |
[4] | Tianliang Hou, Chunmei Liu, Chunlei Dai, Luoping Chen, Yin Yang. TWO-GRID ALGORITHM OF H1-GALERKIN MIXED FINITE ELEMENT METHODS FOR SEMILINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(5): 667-685. |
[5] | Kai Wang, Na Wang. ANALYSIS OF A FULLY DISCRETE FINITE ELEMENT METHOD FOR PARABOLIC INTERFACE PROBLEMS WITH NONSMOOTH INITIAL DATA [J]. Journal of Computational Mathematics, 2022, 40(5): 777-793. |
[6] | Linshuang He, Minfu Feng, Qiang Ma. PENALTY-FACTOR-FREE STABILIZED NONCONFORMING FINITE ELEMENTS FOR SOLVING STATIONARY NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(5): 728-755. |
[7] | Huan Liu, Xiangcheng Zheng, Hongfei Fu. ANALYSIS OF A MULTI-TERM VARIABLE-ORDER TIME-FRACTIONAL DIFFUSION EQUATION AND ITS GALERKIN FINITE ELEMENT APPROXIMATION [J]. Journal of Computational Mathematics, 2022, 40(5): 814-834. |
[8] | Hanzhang Hu, Yanping Chen. A CHARACTERISTIC MIXED FINITE ELEMENT TWO-GRID METHOD FOR COMPRESSIBLE MISCIBLE DISPLACEMENT PROBLEM [J]. Journal of Computational Mathematics, 2022, 40(5): 794-813. |
[9] | Abdelhamid Zaghdani, Sayed Sayari, Miled EL Hajji. A NEW HYBRIDIZED MIXED WEAK GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS* [J]. Journal of Computational Mathematics, 2022, 40(4): 499-516. |
[10] | Xinjiang Chen, Yanqiu Wang. A CONFORMING QUADRATIC POLYGONAL ELEMENT AND ITS APPLICATION TO STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(4): 624-648. |
[11] | Xiaonian Long, Qianqian Ding. A SECOND ORDER UNCONDITIONALLY CONVERGENT FINITE ELEMENT METHOD FOR THE THERMAL EQUATION WITH JOULE HEATING PROBLEM [J]. Journal of Computational Mathematics, 2022, 40(3): 354-372. |
[12] | Noelia Bazarra, José R. Fernández, MariCarme Leseduarte, Antonio Magaña, Ramón Quintanilla. NUMERICAL ANALYSIS OF A PROBLEM INVOLVING A VISCOELASTIC BODY WITH DOUBLE POROSITY [J]. Journal of Computational Mathematics, 2022, 40(3): 415-436. |
[13] | Ram Manohar, Rajen Kumar Sinha. ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(2): 147-176. |
[14] | Jiajie Li, Shengfeng Zhu. ON DISTRIBUTED H1 SHAPE GRADIENT FLOWS IN OPTIMAL SHAPE DESIGN OF STOKES FLOWS: CONVERGENCE ANALYSIS AND NUMERICAL APPLICATIONS [J]. Journal of Computational Mathematics, 2022, 40(2): 231-257. |
[15] | Weijie Huang, Wei Jiang, Yan Wang. A θ-L APPROACH FOR SOLVING SOLID-STATE DEWETTING PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(2): 275-293. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||