Previous Articles Next Articles
Yang Cao, Linquan Yao, Meiqun Jiang, Qiang Niu
Yang Cao, Linquan Yao, Meiqun Jiang, Qiang Niu. A RELAXED HSS PRECONDITIONER FOR SADDLE POINT PROBLEMS FROM MESHFREE DISCRETIZATION[J]. Journal of Computational Mathematics, 2013, 31(4): 398-421.
[1] Z. -Z. Bai, Optimal parameters in the HSS-like methods for saddle point problems, Numer. Linear Algebra Appl., 16 (2009), 447-479.[2] Z. -Z. Bai and G. H. Golub, Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA J. Numer. Anal., 27 (2007), 1-23.[3] Z. -Z. Bai, G. H. Golub, C. -K. Li, Convergence properties of preconditioned Hermitian and skew- Hermitian splitting methods for non-Hermitian positive semidefinite matrices, Math. Comput., 76 (2007), 287-298.[4] Z. -Z. Bai, G. H. Golub and M. K. Ng, Hermitian and skew-Hermitian splitting methods for non- Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), 603-626.[5] Z. -Z. Bai, G. H. Golub and M. K. Ng, On successive-overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations, Numer. Linear Algebra Appl., 14 (2007), 319-335.[6] Z. -Z. Bai, G. H. Golub and J. -Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), 1-32.[7] Z. -Z. Bai and M. K. Ng, On inexact preconditioners for nonsymmetric matrices, SIAM J. Sci. Comput., 26 (2005), 1710-1724.[8] Z. -Z. Bai, M. K. Ng and Z. -Q. Wang, Constraint preconditioners for symmetric indefinite matrices, SIAM J. Matrix Anal. Appl., 31 (2009), 410-433.[9] Z. -Z. Bai, B. N. Parlett and Z. -Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 102 (2005) 1-38.[10] Z. -Z. Bai and Z. -Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 428 (2008), 2900-2932.[11] T. Belytschko, Y. Y. Lu and L. Gu, Element-free Galerkin methods, Int. J. Numer. Meth. Engrg., 37 (1994), 229-256.[12] M. Benzi, M. J. Gander and G. H. Golub, Optimization of the Hermitian and skew-Hermitian splitting iteration for saddle-point problems, BIT, 43 (2003), 881-900.[13] M. Benzi and G. H. Golub, A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl., 26 (2004), 20-41.[14] M. Benzi, G. H. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14 (2005), 1-137.[15] M. Benzi, and X. -P. Guo, A dimensional split preconditioner for Stokes and linearized Navier- Stokes equations, Appl. Numer. Math., 61 (2011), 66-76.[16] M. Benzi, M. K. Ng, Q. Niu and Z. Wang, A relaxed dimensional fractorization preconditioner for the incompressible Navier-Stokes equations, J. Comput. Phys., 230 (2011), 6185-6202.[17] S. L. Borne, S. Oliveira and F. Yang, H-matrix preconditioners for symmetric saddle-point systems from meshfree discretization, Numer. Linear Algebra Appl., 15 (2008), 911-924.[18] Y. Cao, M. -Q. Jiang and L. -Q. Yao, New choices of preconditioning matrices for generalized inexact parameterized iterative methods, J. Comput. Appl. Math., 235 (2010), 263-269.[19] Y. Cao, M. -Q. Jiang and Y. -L. Zheng, A splitting preconditioner for saddle point problems, Numer. Linear Algebra Appl., 18 (2011), 875-895.[20] Y. Cao, M. -Q. Jiang and Y. -L. Zheng, A note on the positive stable block triangular preconditioner for generalized saddle point problems, Appl. Math. Comput., 218 (2012) 11075-11082.[21] Y. Cao, W. -W. Tan and M. -Q. Jiang, A generalization of the positive-definite and skew-Hermitian splitting iteration, Numer. Algebra Control Optimization, 2 (2012), 811-821.[22] Y. Cao, L. -Q. Yao and Y. Yin, New treatment of essential boundary conditions in EFG method by coupling with RPIM, Acta Mech. Solida Sinica, To appear.[23] M. -Q. Jiang and Y. Cao, On local Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math., 231 (2009), 973-982.[24] M. -Q. Jiang, Y. Cao and L. -Q. Yao, On parameterized block triangular preconditioners for generalized saddle point problems, Appl. Math. Comput., 216 (2010), 1777-1789.[25] C. Keller, N. I. M. Gould and A. J. Wathen, Constraint preconditioning for indefinite linear systems, SIAM J. Matrix Anal. Appl., 21 (2000), 1300-1317.[26] K. H. Leem, S. Oliveira and D. E. Stewart, Algebraic multigrid (AMG) for saddle point systems from meshfree discretizations, Numer. Linear Algebra Appl., 11 (2004) 293-308.[27] G. -R. Liu and Y. -T. Gu, An introduction to meshfree methods and their programming, Netherland: Springer; 2005.[28] F. Z. Louaï, N. Naït-Saïd and S. Drid, Implementation of an efficient element-free Galerkin method for electromagnetic computation, Eng. Anal. Boundary Elem., 31 (2007), 191-199.[29] Y. Saad, Iterative Methods for Sparse Linear Systems(2nd edn), SIAM: Philadelphia, 2003.[30] V. Simoncini and M. Benzi, Spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for saddle point problems, SIAM J. Numer. Anal., 27 (2007), 1-23.[31] G. Ventura, An augmented Lagrangian approach to essential boundary conditions in meshless methods, Int. J. Numer. Meth. Engng., 53 (2002), 825-842.[32] H. Zheng and J. -L. Li, A practical solution for KKT systems, Numer. Algor., 46 (2007) 105-119.[33] T. Zhu and S. N. Atluri, A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method, Comput. Mech., 21 (1998), 211-222. |
[1] | Davod Hezari, Vahid Edalatpour, Hadi Feyzollahzadeh, Davod Khojasteh Salkuyeh. ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER [J]. Journal of Computational Mathematics, 2019, 37(1): 18-32. |
[2] | Yang Cao, Zhiru Ren, Linquan Yao. IMPROVED RELAXED POSITIVE-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONERS FOR SADDLE POINT PROBLEMS [J]. Journal of Computational Mathematics, 2019, 37(1): 95-111. |
[3] | Yunfeng Cai, Zhaojun Bai, John E. Pask, N. Sukumar. CONVERGENCE ANALYSIS OF A LOCALLY ACCELERATED PRECONDITIONED STEEPEST DESCENT METHOD FOR HERMITIAN-DEFINITE GENERALIZED EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2018, 36(5): 739-760. |
[4] | Xinhui Shao, Chen Li, Tie Zhang, Changjun Li. A MODIFIED PRECONDITIONER FOR PARAMETERIZED INEXACT UZAWA METHOD FOR INDEFINITE SADDLE POINT PROBLEMS [J]. Journal of Computational Mathematics, 2018, 36(4): 579-590. |
[5] | Yongxin Dong, Chuanqing Gu. ON PMHSS ITERATION METHODS FOR CONTINUOUS SYLVESTER EQUATIONS [J]. Journal of Computational Mathematics, 2017, 35(5): 600-619. |
[6] | Minli Zeng, Guofeng Zhang, Zhong Zheng. GENERALIZED AUGMENTED LAGRANGIAN-SOR ITERATION METHOD FOR SADDLE-POINT SYSTEMS ARISING FROM DISTRIBUTED CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2016, 34(2): 174-185. |
[7] | Xin He, Maya Neytcheva, Cornelis Vuik. ON PRECONDITIONING OF INCOMPRESSIBLE NON-NEWTONIAN FLOW PROBLEMS [J]. Journal of Computational Mathematics, 2015, 33(1): 33-58. |
[8] | Séraphin M. Mefire. STATIC REGIME IMAGING OF LOCATIONS OF CERTAIN 3D ELECTROMAGNETIC IMPERFECTIONS FROM A BOUNDARY PERTURBATION FORMULA [J]. Journal of Computational Mathematics, 2014, 32(4): 412-441. |
[9] | Qingbing Liu, Guoliang Chen, Caiqin Song. PRECONDITIONED HSS-LIKE ITERATIVE METHOD FOR SADDLE POINT PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(4): 442-455. |
[10] | Tatiana S. Martynova. ON AUGMENTED LAGRANGIAN METHODS FOR SADDLE-POINT LINEAR SYSTEMS WITH SINGULAR OR SEMIDEFINITE (1, 1) BLOCKS [J]. Journal of Computational Mathematics, 2014, 32(3): 297-305. |
[11] | Minli Zeng, Guofeng Zhang. A NEW PRECONDITIONING STRATEGY FOR SOLVING A CLASS OF TIME-DEPENDENT PDE-CONSTRAINED OPTIMIZATION PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(3): 215-232. |
[12] | Hongtao Fan, Bing Zheng. THE GENERALIZED LOCAL HERMITIAN AND SKEW-HERMITIAN SPLITTING ITERATION METHODS FOR THE NON-HERMITIAN GENERALIZED SADDLE POINT PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(3): 312-331. |
[13] | Guofeng Zhang, Zhong Zheng. BLOCK-SYMMETRIC AND BLOCK-LOWER-TRIANGULAR PRECONDITIONERS FOR PDE-CONSTRAINED OPTIMIZATION PROBLEMS [J]. Journal of Computational Mathematics, 2013, 31(4): 370-381. |
[14] | F. Alouges, J. Bourguignon-Mirebeau, D. P. Levadoux. A SIMPLE PRECONDITIONED DOMAIN DECOMPOSITION METHOD FOR ELECTROMAGNETIC SCATTERING PROBLEMS [J]. Journal of Computational Mathematics, 2013, 31(1): 1-21. |
[15] | Xin He, Maya Neytcheva. PRECONDITIONING THE INCOMPRESSIBLE NAVIER-STOKESEQUATIONS WITH VARIABLE VISCOSITY [J]. Journal of Computational Mathematics, 2012, 30(5): 461-482. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||