• Original Articles • Next Articles
Minli Zeng1, Guofeng Zhang2
Minli Zeng, Guofeng Zhang. A NEW PRECONDITIONING STRATEGY FOR SOLVING A CLASS OF TIME-DEPENDENT PDE-CONSTRAINED OPTIMIZATION PROBLEMS[J]. Journal of Computational Mathematics, 2014, 32(3): 215-232.
[1] O. Axelsson, M. Neytcheva, B. Ahmad, A comparison of iterative methods to solve complex valued linear algebraic systems, TR 2013-005.[2] Z.-Z. Bai, Block preconditioners for elliptic PDE-constrained optimization, Computing, 91 (2011), 379–395.[3] Z.-Z. Bai, Structured preconditioners for nonsingular matrices of block two-by-two structures, Math. Comput., 75 (2006), 791–815.[4] Z.-Z. Bai, Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks, J. Comput. Appl. Math., 237 (2013), 295–306.[5] Z.-Z. Bai, F. Chen, Z.-Q. Wang, Additive block diagonal preconditioning for block two-by-two linear systems of skew-Hamiltonian coefficient matrices, Numer. Algor., 62 (2013), 655–675.[6] Z.-Z. Bai, G.H. Golub, M.K. Ng, Hermitian and skew-Hermitian splitting methods for non- Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), 603–626.[7] Z.-Z. Bai, G.H. Golub, J.-Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), 1–32.[8] Z.-Z. Bai, G.-Q. Li, Restrictively preconditioned conjugate gradient methods for systems of linear equations, IMA J. Numer. Anal., 23 (2003), 561–580.[9] Z.-Z. Bai, B.N. Parlett, Z.-Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 102 (2005), 1–38.[10] Z.-Z. Bai, Z.-Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 428 (2008), 2900–2932.[11] Z.-Z. Bai, M.K. Ng, Z.-Q. Wang, Constraint preconditioners for symmetric indefinite matrices, SIAM J. Matrix Anal. Appl., 31 (2009), 410–433.[12] Z.-Z. Bai, M. Benzi, F. Chen, Z.-Q. Wang, Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems, IMA J. Numer. Anal., 33 (2013), 343–369.[13] Z.-Z. Bai, On preconditioned iteration methods for complex linear systems, J. Engrg. Math., 2013.[14] M. Benzi, G.H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14 (2005), 1–137.[15] M. Benzi, V. Simoncini, On the eigenvalues of a class of saddle point matrices, Numer. Math., 103 (2006), 173–196.[16] J.H. Bramble, J.E. Pascisk, Analysis of the inexact Uzawa algorithm for saddle point problems, Comput. Optim. Appl., 34 (1997), 1072–1092.[17] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, New York, 1991.[18] M. Gunzburger, C. Trenchea, Optimal control of the time-periodic MHD equations, Nonlinear Anal., 63 (2005), 1687–1699.[19] H.C. Elman, A. Ramage, D.J. Silvester, Algorithm 866: IFISS, A Matlab toolbox for modelling incompressible flow, ACM Trans. Math. Softw., 33 (2007).[20] M. Hinze, Optimization with PDE constraints, Springer, 2009.[21] M. Kollmann, M. Kolmbauer, U. Langer, M. Wolfmayr, W. Zulehner, A robust finite element solver for a multiharmonic parabolic optimal control problem, Comput. Math. Appl., 65 (2013), 469–486.[22] M. Kolmbauer, Efficient solvers for multiharmonic eddy current optimal control problems with various constraints and their analysis, IMA J. Numer. Anal., 2012, doi: 10.1093/imanum/drs025.[23] M.Kollmann, M. Kolmbauer, A preconditioned MinRes solver for time-periodic parabolic optimal control problems, Numer. Linear Algebra Appl., 2012, doi: 10.1002/nla.1842.[24] M. Kolmbauer, U. Langer, A robust preconditioned Minres solver for distributed time-periodic eddy current optimal control problems, SIAM J. Sci. Comput., 34 (2012), 785–809.[25] W. Krendl, V. Simoncini, W. Zulehner, Stability estimates and structural spectral properties of saddle point problems, Numer. Math., 124 (2013), 183–213.[26] J.L. Lions, Optimal control of systems governed by partial differential equations, Berlin: Springer, 1971.[27] J.W. Pearson, M. Stoll, A.J. Wathen, Regularization-robust preconditioners for time-dependent PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl., 33 (2012), 1126–1152.[28] J.W. Pearson, A.J. Wathen, A new approximation of the Schur complement in preconditioners for PDE-constrained optimization, Numer. Linear Algebra Appl., 19 (2012), 816–829.[29] T. Rees, M. Stoll, Block-triangular preconditioners for PDE-constrained optimization, Numer. Linear Algebra Appl., 17 (2010), 977–996.[30] J. Sch¨oberl, W. Zulehner, Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl., 29 (2007), 752–773.[31] D.J. Silvester, A.J. Wathen, Fast iterative solution of stabilized Stokes systems, Part II: Using general block preconditioners, SIAM J. Numer. Anal., 31 (1994), 1352–1367.[32] V. Simoncini, Reduced order solution of structured linear systems arising in certain PDEconstrained optimization problems, Compu. Opt. Appl., 53 (2012), 591–617.[33] M. Stoll, A.J. Wathen, All-at-once solution of time-dependent Stokes control, J. Comput. Phy., 232 (2013), 498–515.[34] F. Tr¨oltzsch, Optimal Control of Partial Differential Equations: Theory, Methods, and Applications, Amer. Math. Soc., 2010. |
[1] | Yifen Ke, Changfeng Ma. MODIFIED ALTERNATING POSITIVE SEMIDEFINITE SPLITTING PRECONDITIONER FOR TIME-HARMONIC EDDY CURRENT MODELS [J]. Journal of Computational Mathematics, 2021, 39(5): 733-754. |
[2] | Davod Hezari, Vahid Edalatpour, Hadi Feyzollahzadeh, Davod Khojasteh Salkuyeh. ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER [J]. Journal of Computational Mathematics, 2019, 37(1): 18-32. |
[3] | Yang Cao, Zhiru Ren, Linquan Yao. IMPROVED RELAXED POSITIVE-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONERS FOR SADDLE POINT PROBLEMS [J]. Journal of Computational Mathematics, 2019, 37(1): 95-111. |
[4] | Yunfeng Cai, Zhaojun Bai, John E. Pask, N. Sukumar. CONVERGENCE ANALYSIS OF A LOCALLY ACCELERATED PRECONDITIONED STEEPEST DESCENT METHOD FOR HERMITIAN-DEFINITE GENERALIZED EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2018, 36(5): 739-760. |
[5] | Xinhui Shao, Chen Li, Tie Zhang, Changjun Li. A MODIFIED PRECONDITIONER FOR PARAMETERIZED INEXACT UZAWA METHOD FOR INDEFINITE SADDLE POINT PROBLEMS [J]. Journal of Computational Mathematics, 2018, 36(4): 579-590. |
[6] | Yongxin Dong, Chuanqing Gu. ON PMHSS ITERATION METHODS FOR CONTINUOUS SYLVESTER EQUATIONS [J]. Journal of Computational Mathematics, 2017, 35(5): 600-619. |
[7] | Minli Zeng, Guofeng Zhang, Zhong Zheng. GENERALIZED AUGMENTED LAGRANGIAN-SOR ITERATION METHOD FOR SADDLE-POINT SYSTEMS ARISING FROM DISTRIBUTED CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2016, 34(2): 174-185. |
[8] | Xin He, Maya Neytcheva, Cornelis Vuik. ON PRECONDITIONING OF INCOMPRESSIBLE NON-NEWTONIAN FLOW PROBLEMS [J]. Journal of Computational Mathematics, 2015, 33(1): 33-58. |
[9] | Séraphin M. Mefire. STATIC REGIME IMAGING OF LOCATIONS OF CERTAIN 3D ELECTROMAGNETIC IMPERFECTIONS FROM A BOUNDARY PERTURBATION FORMULA [J]. Journal of Computational Mathematics, 2014, 32(4): 412-441. |
[10] | Qingbing Liu, Guoliang Chen, Caiqin Song. PRECONDITIONED HSS-LIKE ITERATIVE METHOD FOR SADDLE POINT PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(4): 442-455. |
[11] | Xiaoying Zhang, Yumei Huang. ON BLOCK PRECONDITIONERS FOR PDE-CONSTRAINED OPTIMIZATION PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(3): 272-283. |
[12] | Hongtao Fan, Bing Zheng. THE GENERALIZED LOCAL HERMITIAN AND SKEW-HERMITIAN SPLITTING ITERATION METHODS FOR THE NON-HERMITIAN GENERALIZED SADDLE POINT PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(3): 312-331. |
[13] | Yang Cao, Linquan Yao, Meiqun Jiang, Qiang Niu. A RELAXED HSS PRECONDITIONER FOR SADDLE POINT PROBLEMS FROM MESHFREE DISCRETIZATION [J]. Journal of Computational Mathematics, 2013, 31(4): 398-421. |
[14] | Guofeng Zhang, Zhong Zheng. BLOCK-SYMMETRIC AND BLOCK-LOWER-TRIANGULAR PRECONDITIONERS FOR PDE-CONSTRAINED OPTIMIZATION PROBLEMS [J]. Journal of Computational Mathematics, 2013, 31(4): 370-381. |
[15] | F. Alouges, J. Bourguignon-Mirebeau, D. P. Levadoux. A SIMPLE PRECONDITIONED DOMAIN DECOMPOSITION METHOD FOR ELECTROMAGNETIC SCATTERING PROBLEMS [J]. Journal of Computational Mathematics, 2013, 31(1): 1-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||