Previous Articles Next Articles
Yifeng Xu1,2, Jianguo Huang3, Xuehai Huang4
Yifeng Xu, Jianguo Huang, Xuehai Huang. A POSTERIORI ERROR ESTIMATES FOR LOCAL C0 DISCONTINUOUS GALERKIN METHODS FOR KIRCHHOFF PLATE BENDING PROBLEMS[J]. Journal of Computational Mathematics, 2014, 32(6): 665-686.
[1] M. Ainsworth, A posteriori error estimation for discontinuous Galerkin finite element approximation, SIAM J. Numer. Anal., 45 (2007), 1777-1798.[2] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779.[3] I. Babuška and M. Zl'amal, Nonconforming elements in the finite element method with penalty, SIAM J. Numer. Anal., 10 (1973), 863-875.[4] G. A. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp., 31 (1977), 45-59.[5] R. Becker, P. Hansbo, and M. G. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg., 192 (2003), 723-733.[6] L. Beirão da Veiga, J. Niiranen, and R. Stenberg, A posteriori error estimates for the Morley plate bending element, Numer. Math., 106 (2007), 165-179.[7] L. Beirão da Veiga, J. Niiranen, and R. Stenberg, A posteriori error analysis for the Morley plate element with general boundary conditions, Int. J. Numer. Methods Eng., 83 (2010), 1-26.[8] S. C. Brenner, T. Gudi, and L. Sung, An a posteriori error estimator for a quadratic C0-interior penalty method for the biharmonic problem, IMA J. Numer. Anal., 30 (2010), 777-798.[9] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods (Third Edition), Springer, New York, 2008.[10] S. C. Brenner and L. Sung, C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comp., 22/23 (2005), 83-118.[11] F. Brezzi, B. Cockburn, L. D. Marini, and E. Süli, Stabilization mechanisms in discontinuous Galerkin finite element methods, Comput. Methods Appl. Mech. Engrg., 195 (2006), 3293-3310.[12] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.[13] R. Bustinza, G. Gatica, and B. Cockburn, An a posteriori error estimate for the local discontinuous Galerkin method applied to linear and nonlinear diffusion problems, J. Sci. Comp., 22/23 (2005), 147-185.[14] C. Carstensen, T. Gudi, and M. Jensen, A unifying theory of a posteriori error control for discontinuous Galerkin FEM, Numer. Math., 112 (2009), 363-379.[15] P. Castillo, An a posteriori error estimate for the local discontinuous Galerkin method, J. Sci. Comp., 22/23 (2005), 187-204.[16] P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal., 18 (2000), 1676-1706.[17] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.[18] B. Cockburn, Discontinuous Galerkin methods, ZAMM Z. Angew. Math. Mech., 83 (2003), 731-754.[19] B. Cockburn, B. Dong, and J. Guzm'an, A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems, J. Sci, Comput., 40 (2009), 141-187.[20] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), 2440-2463.[21] B. Cockburn, G. E. Karniadakis, and C.-W. Shu (eds.), Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, vol. 11, Springer, Berlin-Heidelberg-New York, 2000.[22] J. Jr. Douglas, T. Dupont, P. Percell, and R. Scott, A family of C1 finite element with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems, R.A.I.R.O., Anal. Num'er., 13 (1979), 227-255.[23] G. Engel, K. Garikipati, T. J. R. Hughes, M. G. Larson, L. Mazzei, and R. L. Taylor, Continuous/ discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Comput. Methods Appl. Mech. Engrg., 191 (2002), 3669-3750.[24] E. H. Georgoulis and P. Houston, Discontinuous Galerkin methods for the biharmonic problem, IMA J. Numer. Anal., 29 (2009), 573-594.[25] E. H. Georgoulis, P. Houston, and J. Virtanen, An a posteriori error indicator for discontinuous Galerkin approximations of fourth order elliptic problems, IMA J. Numer. Anal., 31 (2011), 281-298.[26] P. Grisvard, Singularities in Boundary Value Problems, Masson, Paris, 1992.[27] P. Hansbo and M. G. Larson, A discontinuous Galerkin method for the plate equation, Calcolo, 39 (2002), 41-59.[28] P. Hansbo and M. G. Larson, A posteriori error estimates for continuous/discontinuous Galerkin approximations of the Kirchhoff-Love plate, Comput. Methods Appl. Mech. Engrg., 200 (2011), 3289-3295.[29] P. Houston, D. Schötzau, and T. P. Wihler, Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for ellipt problems, Math. Models Methods Appl. Sci., 17 (2007), 33-62.[30] J. Hu and Z. Shi, A new a posteriori error estimate for the Morley element, Numer. Math., 112 (2009), 25-40.[31] J. Huang, X. Huang, and W. Han, A new C0 discontinuous Galerkin method for Kirchhoff plates, Comput. Methods Appl. Meth. Engrg., 199 (2010), 1446-1454.[32] O. A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal., 41 (2003), 2374-2399.[33] L. S. D. Morley, The triangular equilibrium element in the solution of plate bending problems, Aero. Quart., 19 (1968), 149-169.[34] I. Mozolevski and P. R. Bösing, Sharp expressions for the stabilization parameters in symmetric interior-penalty discontinuous Galerkin finite element approximations of fourth-order elliptic problems, Comput. Methods Appl. Math., 7 (2007), 365-375.[35] I. Mozolevski and E. Süli, A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation, Comput. Methods Appl. Math., 3 (2003), 596-607.[36] I. Mozolevski, E. Süli, and P. R. Bösing, hp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation, J. Sci. Comput., 30 (2007), 465-491.[37] B. Rivière and M. Wheeler, A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems, Comput. Math. Appl., 46 (2003), 141-163.[38] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), 483-493.[39] E. Süli and I. Mozolevski, hp-version interior penalty DGFEMs for the biharmonic equation, Comput. Methods Appl. Mech. Engrg., 196 (2007), 1851-1863.[40] R. Verfürth, A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, Chichester, New York, Stuttgart, 1996.[41] G. N. Wells and N. T. Dung, A C0 discontinuous Galerkin formulation for Kirchhoff plates, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3370-3380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||