Previous Articles     Next Articles

A POSTERIORI ERROR ESTIMATES FOR LOCAL C0 DISCONTINUOUS GALERKIN METHODS FOR KIRCHHOFF PLATE BENDING PROBLEMS

Yifeng Xu1,2, Jianguo Huang3, Xuehai Huang4   

  1. 1. Department of Mathematics, Shanghai Normal University, Shanghai 200234, China Division of Computational Science, E-Institute of Shanghai Universities, Shanghai Normal University, Shanghai 200234, China;
    2. Scientific Computing Key Laboratory of Shanghai Universities, Shanghai Normal University, Shanghai 200234, China;
    3. Department of Mathematics, MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China Division of Computational Science, E-Institute of Shanghai Universities, Shanghai Normal University, Shanghai 200234, China;
    4. College of Mathematics and Information Science, Wenzhou University, Wenzhou 325035, China
  • Received:2013-07-10 Revised:2014-04-04 Online:2014-11-15 Published:2014-09-03
  • Supported by:

    The authors thank the referees for their valuable comments leading to great improvement of the earlier version of the paper. This work was partially supported by the National Natural Science Foundation of China (11171219, 11201307, 11301396), China MOE Specialized Research Fund for the Doctoral Program of Higher Education (20123127120001), E-Institutes of Shanghai Municipal Education Commission (E03004), and Innovation Program of Shanghai Municipal Education Commission (13YZ059).

Yifeng Xu, Jianguo Huang, Xuehai Huang. A POSTERIORI ERROR ESTIMATES FOR LOCAL C0 DISCONTINUOUS GALERKIN METHODS FOR KIRCHHOFF PLATE BENDING PROBLEMS[J]. Journal of Computational Mathematics, 2014, 32(6): 665-686.

We derive some residual-type a posteriori error estimates for the local C0 discontinuous Galerkin (LCDG) approximations ([31]) of the Kirchhoff bending plate clamped on the boundary. The estimator is both reliable and efficient with respect to the moment-field approximation error in an energy norm. Some numerical experiments are reported to demonstrate theoretical results.

CLC Number: 

[1] M. Ainsworth, A posteriori error estimation for discontinuous Galerkin finite element approximation, SIAM J. Numer. Anal., 45 (2007), 1777-1798.

[2] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779.

[3] I. Babuška and M. Zl'amal, Nonconforming elements in the finite element method with penalty, SIAM J. Numer. Anal., 10 (1973), 863-875.

[4] G. A. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp., 31 (1977), 45-59.

[5] R. Becker, P. Hansbo, and M. G. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg., 192 (2003), 723-733.

[6] L. Beirão da Veiga, J. Niiranen, and R. Stenberg, A posteriori error estimates for the Morley plate bending element, Numer. Math., 106 (2007), 165-179.

[7] L. Beirão da Veiga, J. Niiranen, and R. Stenberg, A posteriori error analysis for the Morley plate element with general boundary conditions, Int. J. Numer. Methods Eng., 83 (2010), 1-26.

[8] S. C. Brenner, T. Gudi, and L. Sung, An a posteriori error estimator for a quadratic C0-interior penalty method for the biharmonic problem, IMA J. Numer. Anal., 30 (2010), 777-798.

[9] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods (Third Edition), Springer, New York, 2008.

[10] S. C. Brenner and L. Sung, C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comp., 22/23 (2005), 83-118.

[11] F. Brezzi, B. Cockburn, L. D. Marini, and E. Süli, Stabilization mechanisms in discontinuous Galerkin finite element methods, Comput. Methods Appl. Mech. Engrg., 195 (2006), 3293-3310.

[12] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.

[13] R. Bustinza, G. Gatica, and B. Cockburn, An a posteriori error estimate for the local discontinuous Galerkin method applied to linear and nonlinear diffusion problems, J. Sci. Comp., 22/23 (2005), 147-185.

[14] C. Carstensen, T. Gudi, and M. Jensen, A unifying theory of a posteriori error control for discontinuous Galerkin FEM, Numer. Math., 112 (2009), 363-379.

[15] P. Castillo, An a posteriori error estimate for the local discontinuous Galerkin method, J. Sci. Comp., 22/23 (2005), 187-204.

[16] P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal., 18 (2000), 1676-1706.

[17] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

[18] B. Cockburn, Discontinuous Galerkin methods, ZAMM Z. Angew. Math. Mech., 83 (2003), 731-754.

[19] B. Cockburn, B. Dong, and J. Guzm'an, A hybridizable and superconvergent discontinuous Galerkin method for biharmonic problems, J. Sci, Comput., 40 (2009), 141-187.

[20] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), 2440-2463.

[21] B. Cockburn, G. E. Karniadakis, and C.-W. Shu (eds.), Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, vol. 11, Springer, Berlin-Heidelberg-New York, 2000.

[22] J. Jr. Douglas, T. Dupont, P. Percell, and R. Scott, A family of C1 finite element with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems, R.A.I.R.O., Anal. Num'er., 13 (1979), 227-255.

[23] G. Engel, K. Garikipati, T. J. R. Hughes, M. G. Larson, L. Mazzei, and R. L. Taylor, Continuous/ discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity, Comput. Methods Appl. Mech. Engrg., 191 (2002), 3669-3750.

[24] E. H. Georgoulis and P. Houston, Discontinuous Galerkin methods for the biharmonic problem, IMA J. Numer. Anal., 29 (2009), 573-594.

[25] E. H. Georgoulis, P. Houston, and J. Virtanen, An a posteriori error indicator for discontinuous Galerkin approximations of fourth order elliptic problems, IMA J. Numer. Anal., 31 (2011), 281-298.

[26] P. Grisvard, Singularities in Boundary Value Problems, Masson, Paris, 1992.

[27] P. Hansbo and M. G. Larson, A discontinuous Galerkin method for the plate equation, Calcolo, 39 (2002), 41-59.

[28] P. Hansbo and M. G. Larson, A posteriori error estimates for continuous/discontinuous Galerkin approximations of the Kirchhoff-Love plate, Comput. Methods Appl. Mech. Engrg., 200 (2011), 3289-3295.

[29] P. Houston, D. Schötzau, and T. P. Wihler, Energy norm a posteriori error estimation of hp-adaptive discontinuous Galerkin methods for ellipt problems, Math. Models Methods Appl. Sci., 17 (2007), 33-62.

[30] J. Hu and Z. Shi, A new a posteriori error estimate for the Morley element, Numer. Math., 112 (2009), 25-40.

[31] J. Huang, X. Huang, and W. Han, A new C0 discontinuous Galerkin method for Kirchhoff plates, Comput. Methods Appl. Meth. Engrg., 199 (2010), 1446-1454.

[32] O. A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal., 41 (2003), 2374-2399.

[33] L. S. D. Morley, The triangular equilibrium element in the solution of plate bending problems, Aero. Quart., 19 (1968), 149-169.

[34] I. Mozolevski and P. R. Bösing, Sharp expressions for the stabilization parameters in symmetric interior-penalty discontinuous Galerkin finite element approximations of fourth-order elliptic problems, Comput. Methods Appl. Math., 7 (2007), 365-375.

[35] I. Mozolevski and E. Süli, A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation, Comput. Methods Appl. Math., 3 (2003), 596-607.

[36] I. Mozolevski, E. Süli, and P. R. Bösing, hp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation, J. Sci. Comput., 30 (2007), 465-491.

[37] B. Rivière and M. Wheeler, A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems, Comput. Math. Appl., 46 (2003), 141-163.

[38] L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1990), 483-493.

[39] E. Süli and I. Mozolevski, hp-version interior penalty DGFEMs for the biharmonic equation, Comput. Methods Appl. Mech. Engrg., 196 (2007), 1851-1863.

[40] R. Verfürth, A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, Chichester, New York, Stuttgart, 1996.

[41] G. N. Wells and N. T. Dung, A C0 discontinuous Galerkin formulation for Kirchhoff plates, Comput. Methods Appl. Mech. Engrg., 196 (2007), 3370-3380.
[1] Yong Liu, Chi-Wang Shu, Mengping Zhang. SUB-OPTIMAL CONVERGENCE OF DISCONTINUOUS GALERKIN METHODS WITH CENTRAL FLUXES FOR LINEAR HYPERBOLIC EQUATIONS WITH EVEN DEGREE POLYNOMIAL APPROXIMATIONS [J]. Journal of Computational Mathematics, 2021, 39(4): 518-537.
[2] Junming Duan, Huazhong Tang. AN EFFICIENT ADER DISCONTINUOUS GALERKIN SCHEME FOR DIRECTLY SOLVING HAMILTON-JACOBI EQUATION [J]. Journal of Computational Mathematics, 2020, 38(1): 58-83.
[3] Ruo Li, Pingbing Ming, Zhiyuan Sun, Fanyi Yang, Zhijian Yang. A DISCONTINUOUS GALERKIN METHOD BY PATCH RECONSTRUCTION FOR BIHARMONIC PROBLEM [J]. Journal of Computational Mathematics, 2019, 37(4): 524-540.
[4] Xinjie Dai, Aiguo Xiao. NUMERICAL SOLUTIONS OF NONAUTONOMOUS STOCHASTIC DELAY DIFFERENTIAL EQUATIONS BY DISCONTINUOUS GALERKIN METHODS [J]. Journal of Computational Mathematics, 2019, 37(3): 419-436.
[5] Fei Wang, Tianyi Zhang, Weimin Han. C0 DISCONTINUOUS GALERKIN METHODS FOR A PLATE FRICTIONAL CONTACT PROBLEM [J]. Journal of Computational Mathematics, 2019, 37(2): 184-200.
[6] Zhoufeng Wang, Peiqi Huang. AN ADAPTIVE FINITE ELEMENT METHOD FOR THE WAVE SCATTERING BY A PERIODIC CHIRAL STRUCTURE [J]. Journal of Computational Mathematics, 2018, 36(6): 845-865.
[7] Fan Zhang, Tiegang Liu, Jian Cheng. HIGH ORDER STABLE MULTI-DOMAIN HYBRID RKDG AND WENO-FD METHODS [J]. Journal of Computational Mathematics, 2018, 36(4): 517-541.
[8] Yao Cheng, Qiang Zhang. LOCAL ANALYSIS OF THE FULLY DISCRETE LOCAL DISCONTINUOUS GALERKIN METHOD FOR THE TIME-DEPENDENT SINGULARLY PERTURBED PROBLEM [J]. Journal of Computational Mathematics, 2017, 35(3): 265-288.
[9] Mahboub Baccouch. OPTIMAL A POSTERIORI ERROR ESTIMATES OF THE LOCAL DISCONTINUOUS GALERKIN METHOD FOR CONVECTIONDIFFUSION PROBLEMS IN ONE SPACE DIMENSION [J]. Journal of Computational Mathematics, 2016, 34(5): 511-531.
[10] Ruihan Guo, Liangyue Ji, Yan Xu. HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION [J]. Journal of Computational Mathematics, 2016, 34(2): 135-158.
[11] Jian Cheng, Kun Wang, Tiegang Liu. A GENERAL HIGH-ORDER MULTI-DOMAIN HYBRID DG/WENO-FD METHOD FOR HYPERBOLIC CONSERVATION LAWS [J]. Journal of Computational Mathematics, 2016, 34(1): 30-48.
[12] Carolina Domínguez, Gabriel N. Gatica, Salim Meddahi. A POSTERIORI ERROR ANALYSIS OF A FULLY-MIXED FINITE ELEMENT METHOD FOR A TWO-DIMENSIONAL FLUID-SOLID INTERACTION PROBLEM [J]. Journal of Computational Mathematics, 2015, 33(6): 606-641.
[13] Yang Yang, Chi-Wang Shu. ANALYSIS OF SHARP SUPERCONVERGENCE OF LOCAL DISCONTINUOUS GALERKIN METHOD FOR ONE-DIMENSIONAL LINEAR PARABOLIC EQUATIONS [J]. Journal of Computational Mathematics, 2015, 33(3): 323-340.
[14] Tianliang Hou, Yanping Chen. MIXED DISCONTINUOUS GALERKIN TIME-STEPPING METHOD FOR LINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2015, 33(2): 158-178.
[15] Xiaobing Feng, Thomas Lewis. MIXED INTERIOR PENALTY DISCONTINUOUS GALERKIN METHODS FOR ONE-DIMENSIONAL FULLY NONLINEAR SECOND ORDER ELLIPTIC AND PARABOLIC EQUATIONS [J]. Journal of Computational Mathematics, 2014, 32(2): 107-135.
Viewed
Full text


Abstract