Previous Articles Next Articles
Francisco Guillén-González1, Giordano Tier2,3
Francisco Guillén-González, Giordano Tier. SPLITTING SCHEMES FOR A NAVIER-STOKES-CAHN-HILLIARD MODEL FOR TWO FLUIDS WITH DIFFERENT DENSITIES[J]. Journal of Computational Mathematics, 2014, 32(6): 643-664.
[1] H. Abels, Strong well-posedness of a diffuse interface model for a viscous, quasi-incompressible two-phase ow, SIAM J. Math. Anal, 44 (2012), 316-340.[2] H. Abels, D. Depner and H. Garcke, Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible uids with different densities, J. Math. Fluid Mech, 15:3 (2013), 453-480.[3] H. Abels, H. Garcke and G. Grun, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci, 22:03 (2012), 1150013.[4] F. Boyer, A theoretical and numerical model for the study of incompressible mixture flows, Com-puters & Fluids, 31 (2002), 41-68.[5] R.C. Cabrales, F. Guillén-González and J.V. Gutiérrez-Santacreu, Stability and convergence for a complete model of mass diffusion, Appl. Numer. Math., 61 (2011), 1161-1185.[6] F. Chen and J. Shen, Effcient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems, Commun. Comput. Phys, 13 (2013), 1189-1208.[7] C. Collins, J. Shen and S.M. Wise, An effcient, energy stable scheme for the Cahn-Hilliard-Brinkman system, Commun. Comput. Phys, 13 (2013), 929-957.[8] M.I.M. Copetti and C.M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math., 63 (1992), 39-65.[9] Q. Du and R.A. Nicolaides, Numerical analysis of a continuum model of phase transition, SIAM J. Numer. Anal, 28 (1991), 1310-1322.[10] C.M. Elliott, D.A. French and F.A. Milner, A Second Order Splitting Method for the Cahn-Hilliard Equation, Numer. Math, 54 (1989), 575-590.[11] F. Hecht, New development in freefem++, J. Numer. Math, 20:3-4 (2012), 251-265.[12] V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations: Theory and Algorithms, Berlin, Springer-Verlag, 1986.[13] J.L. Guermond and L. Quartapelle, A projection FEM for variable density incompressible flows, J. Comput. Phys, 165 (2000), 167-188.[14] F. Guillén-González and J.V. Gutiérrez-Santacreu, Unconditional stability and convergence of fully discrete schemes for 2D viscous uids models with mass diffusion, Math. Comp, 77 (2008), 1495-1524.[15] F. Guillén-González and J.V. Gutiérrez-Santacreu, Conditional stability and convergence of a fully discrete scheme for three-dimensional Navier-Stokes equations with mass diffusion, SIAM Journal Numer. Anal, 46 (2008), 2276-2308.[16] F. Guillén-González and G. Tierra, On linear schemes for a Cahn Hilliard Diffuse Interface Model, J. Comput. Phys, 234 (2013), 140-171.[17] F. Guillén-González and G. Tierra, Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models, Comput. Math. Appl. (2014). doi:10.1016/j.camwa.2014.07.014.[18] D. Gurtin, D. Polignone and J. Vi~nals, Two-phase binary uids and immiscible uids described by an order parameter, Math. Models Methods Appl. Sci, 6 (1996), 815-831.[19] P.P. Hohenberg and B.I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys, 49 (1977), 435-479.[20] J. Kim, Phase-field models for multi-component uid flows, Commun. Comput. Phys, 12 (2012), 613-661.[21] J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard uids and topological transitions, Proc. R. Soc. Lond. A, 454 (1998), 2617-2654.[22] S. Minjeaud, An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model, Num. Methods for PDE 29:2 (2013), 584-618.[23] J. Shen and X. Yang, A phase-field model and its numerical approximation for two-phase incompressible ows with different densities and viscosities, SIAM J. Sci. Comput, 32 (2010), 1159-1179.[24] J. Shen, X. Yang and Q. Wang, Mass and volume conservation in phase field models for binary uids, Commun. Comput. Phys, 13 (2013), 1045-1065.[25] J.D. van der Waals, The thermodynamic theory of capillarity ow under the hypothesis of a continuous variation of density, Verhandel. Konink. Akad. Weten. Amsterdam, 1 (1893).[26] P. Yue, J.J. Feng, C. Liu and J. Shen, A diffuse-interface method for simulating two-phase flows of complex uids, J. Fluid Mech, 515 (2004), 293-317.[27] T. Zhang and Q. Wang, Cahn-Hilliard vs singular Cahn-Hilliard equations in phase field modeling, Commun. Comput. Phys, 7 (2010), 362-382. |
[1] | Jonas Bünger, Neeraj Sarna, Manuel Torrilhon. STABLE BOUNDARY CONDITIONS AND DISCRETIZATION FOR PN EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(6): 977-1003. |
[2] | Linshuang He, Minfu Feng, Qiang Ma. PENALTY-FACTOR-FREE STABILIZED NONCONFORMING FINITE ELEMENTS FOR SOLVING STATIONARY NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(5): 728-755. |
[3] | Huaijun Yang, Dongyang Shi. UNCONDITIONALLY OPTIMAL ERROR ESTIMATES OF THE BILINEAR-CONSTANT SCHEME FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(1): 127-146. |
[4] | Huaijun Yang, Dongyang Shi, Qian Liu. SUPERCONVERGENCE ANALYSIS OF LOW ORDER NONCONFORMING MIXED FINITE ELEMENT METHODS FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 63-80. |
[5] | Xiaocui Li, Xu You. MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 130-146. |
[6] | Chunmei Xie, Minfu Feng. A NEW STABILIZED FINITE ELEMENT METHOD FOR SOLVING TRANSIENT NAVIER-STOKES EQUATIONS WITH HIGH REYNOLDS NUMBER [J]. Journal of Computational Mathematics, 2020, 38(3): 395-416. |
[7] | Jie Chen, Zhengkang He, Shuyu Sun, Shimin Guo, Zhangxin Chen. EFFICIENT LINEAR SCHEMES WITH UNCONDITIONAL ENERGY STABILITY FOR THE PHASE FIELD MODEL OF SOLID-STATE DEWETTING PROBLEMS [J]. Journal of Computational Mathematics, 2020, 38(3): 452-468. |
[8] | Baiju Zhang, Yan Yang, Minfu Feng. A C0-WEAK GALERKIN FINITE ELEMENT METHOD FOR THE TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS IN STREAM-FUNCTION FORMULATION [J]. Journal of Computational Mathematics, 2020, 38(2): 310-336. |
[9] | Malte Braack, Utku Kaya. LOCAL PRESSURE CORRECTION FOR THE STOKES SYSTEM [J]. Journal of Computational Mathematics, 2020, 38(1): 125-141. |
[10] | Rui Chen, Xiaofeng Yang, Hui Zhang. DECOUPLED, ENERGY STABLE SCHEME FOR HYDRODYNAMIC ALLEN-CAHN PHASE FIELD MOVING CONTACT LINE MODEL [J]. Journal of Computational Mathematics, 2018, 36(5): 661-681. |
[11] | Xiao Li, Zhonghua Qiao, Hui Zhang. A SECOND-ORDER CONVEX SPLITTING SCHEME FOR A CAHN-HILLIARD EQUATION WITH VARIABLE INTERFACIAL PARAMETERS [J]. Journal of Computational Mathematics, 2017, 35(6): 693-710. |
[12] | Qiujin Peng, Zhonghua Qiao, Shuyu Sun. STABILITY AND CONVERGENCE ANALYSIS OF SECOND-ORDER SCHEMES FOR A DIFFUSE INTERFACE MODEL WITH PENG-ROBINSON EQUATION OF STATE [J]. Journal of Computational Mathematics, 2017, 35(6): 737-765. |
[13] | Huiyong Jia, Peilin Shi, Kaitai Li, Hongen Jia . A DECOUPLING METHOD WITH DIFFERENT SUBDOMAIN TIME STEPS FOR THE NON-STATIONARY NAVIER-STOKES/DARCY MODEL [J]. Journal of Computational Mathematics, 2017, 35(3): 319-345. |
[14] | Tao Tang, Jiang Yang. IMPLICIT-EXPLICIT SCHEME FOR THE ALLEN-CAHN EQUATION PRESERVES THE MAXIMUM PRINCIPLE [J]. Journal of Computational Mathematics, 2016, 34(5): 451-461. |
[15] | Ruihan Guo, Liangyue Ji, Yan Xu. HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION [J]. Journal of Computational Mathematics, 2016, 34(2): 135-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||