Previous Articles Next Articles
Carolina Domínguez1, Gabriel N. Gatica2, Salim Meddahi3
Carolina Domínguez, Gabriel N. Gatica, Salim Meddahi. A POSTERIORI ERROR ANALYSIS OF A FULLY-MIXED FINITE ELEMENT METHOD FOR A TWO-DIMENSIONAL FLUID-SOLID INTERACTION PROBLEM[J]. Journal of Computational Mathematics, 2015, 33(6): 606-641.
[1] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, New Jersey, 1965.[2] A. Alonso, Error estimators for a mixed method, Numer. Math., 74(1996), 385-395.[3] D.N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19:4(1982), 742-760.[4] D.N. Arnold, F. Brezzi and J. Douglas, PEERS:A new mixed finite element method for plane elasticity, Japan J. Appl. Math., 1:2(1984), 347-367.[5] I. Babuška and G.N. Gatica, A residual-based a posteriori error estimator for the Stokes-Darcy coupled problem, SIAM J. Numer. Anal., 48:2(2010), 498-523.[6] T. Barrios, G.N. Gatica, M. González and N. Heuer, A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity, ESAIM:Math. Model. Numer. Anal., 40:5(2006), 843-869.[7] Ph. Bouillard, Influence of the pollution on the admissible field error estimation for FE solutions of the Helmholtz equation, International Journal for Numerical Methods in Engineering, 45:7(1999), 783-800.[8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Verlag, 1991.[9] C. Carstensen, An a posteriori error estimate for a first kind integral equation, Math. Comput., 66:217(1997), 139-155.[10] C. Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comput., 66:218(1997), 465-476.[11] C. Carstensen and G. Dolzmann, A posteriori error estimates for mixed FEM in elasticity, Numer. Math., 81:1(1998), 187-209.[12] P. Clément, Approximation by finite element functions using local regularisation, RAIRO Modélisation Mathématique et Analyse Numérique, 9(1975), 77-84.[13] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, New York, Oxford, 1978.[14] C. Domínguez, G.N. Gatica, S. Meddahi and R. Oyarzúa, A priori error analysis of a fully-mixed finite element method for a two-dimensional fluid-solid interaction problem, ESAIM:Math. Model. Numer. Anal., 47:2(2013), 471-506.[15] G.N. Gatica, A Simple Introduction to the Mixed Finite Element Method. Theory and Applications, SpringerBriefs in Mathematics, Springer, Cham Heidelberg New York Dordrecht London, 2014.[16] G.N. Gatica, G.C. Hsiao and S. Meddahi, A residual-based a posteriori error estimator for a two-dimensional fluid-solid interaction problem, Numerische Mathematik, 114:1(2009), 63-106.[17] G.N. Gatica, A. Márquez and S. Meddahi, Analysis of the coupling of primal and dual-mixed finite element methods for a two-dimensional fluid-solid interaction problem, SIAM J. Numer. Anal., 45:5(2007), 2072-2097.[18] G.N. Gatica, A. Márquez and S. Meddahi, Analysis of the coupling of BEM, FEM and mixed-FEM for a two-dimensional fluid-solid interaction problem, Appl. Numer. Math., 59:11(2009), 2735-2750,[19] G.N. Gatica, A. Márquez and M.A. Sánchez, Analysis of a velocity-pressure-pseudostress formulation for the stationary Stokes equations, Computer Methods in Applied Mechanics and Engineering, 199:17-20(2010), 1064-1079.[20] G.N. Gatica and S. Meddahi, An a-posteriori error estimate for the coupling of BEM and mixedFEM, Numerical Functional Analysis and Optimization, 20:5-6(1999), 449-472.[21] G.N. Gatica, R. Oyarzúa and F.-J. Sayas, Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem, Math. Comput., 80:276(2011), 1911-1948.[22] G.N. Gatica, R. Oyarzúa and F.-J. Sayas, A residual-based a posteriori error estimator for a fully mixed formulation of the Stokes-Darcy coupled problem, Computer Methods in Applied Mechanics and Engineering, 200:21-22(2011), 1877-1891.[23] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, 1986.[24] F. Ihlenburg and I. Babuška, Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation, International Journals for Numerical Methods in Engineering, 38:22(1995), 3745-3774.[25] S. Irimie and Ph. Boiullard, A reliable a posteriori error estimator for the finite element solution of the Helmholtz equation, Computer Methods in Applied Mechanics and Engineering, 190:31(2001), 4027-4042.[26] M. Lonsing and R. Verfürth, A posteriori error estimators for mixed finite element methods in linear elasticity, Numerische Mathematik, 97:4(2004), 757-778.[27] J.E. Roberts and J.M. Thomas, Mixed and Hybrid Methods. In:Handbook of Numerical Analysis, edited by P.G. Ciarlet and J.L. Lions, vol. II, Finite Element Methods(Part 1), 1991, NorthHolland, Amsterdam.[28] R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques, Journal of Computational and Applied Mathematics, 50:1-3(1994), 67-83.[29] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner(Chichester), 1996. |
[1] | Lina Dong, Shaochun Chen. UNIFORMLY CONVERGENT NONCONFORMING TETRAHEDRAL ELEMENT FOR DARCY-STOKES PROBLEM [J]. Journal of Computational Mathematics, 2019, 37(1): 130-150. |
[2] | Zhoufeng Wang, Peiqi Huang. AN ADAPTIVE FINITE ELEMENT METHOD FOR THE WAVE SCATTERING BY A PERIODIC CHIRAL STRUCTURE [J]. Journal of Computational Mathematics, 2018, 36(6): 845-865. |
[3] | Ruming Zhang, Bo Zhang. A NEW INTEGRAL EQUATION FORMULATION FOR SCATTERING BY PENETRABLE DIFFRACTION GRATINGS [J]. Journal of Computational Mathematics, 2018, 36(1): 110-127. |
[4] | Peijun Li. A SURVEY OF OPEN CAVITY SCATTERING PROBLEMS [J]. Journal of Computational Mathematics, 2018, 36(1): 1-16. |
[5] | Xiaolu Su, Xiufang Feng, Zhilin Li. FOURTH-ORDER COMPACT SCHEMES FOR HELMHOLTZ EQUATIONS WITH PIECEWISE WAVE NUMBERS IN THE POLAR COORDINATES [J]. Journal of Computational Mathematics, 2016, 34(5): 499-510. |
[6] | Yifeng Xu, Jianguo Huang, Xuehai Huang. A POSTERIORI ERROR ESTIMATES FOR LOCAL C0 DISCONTINUOUS GALERKIN METHODS FOR KIRCHHOFF PLATE BENDING PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(6): 665-686. |
[7] | Tian Luan, Fuming Ma, Minghui Liu. ERROR ESTIMATION FOR NUMERICAL METHODS USING THE ULTRA WEAK VARIATIONAL FORMULATION IN MODEL OF NEAR FIELD SCATTERING PROBLEM [J]. Journal of Computational Mathematics, 2014, 32(5): 491-506. |
[8] | Lunji Song, Jing Zhang, Li-Lian Wang. A MULTI-DOMAIN SPECTRAL IPDG METHOD FOR HELMHOLTZ EQUATION WITH HIGH WAVE NUMBER [J]. Journal of Computational Mathematics, 2013, 31(2): 107-136. |
[9] | Zhongyi Huang, Xu Yang. TAILORED FINITE CELL METHOD FOR SOLVING HELMHOLTZ EQUATION IN LAYERED HETEROGENEOUS MEDIUM [J]. Journal of Computational Mathematics, 2012, 30(4): 381-391. |
[10] | Yunyun Ma, Fuming Ma, Heping Dong. A PROJECTION METHOD WITH REGULARIZATION FOR THE CAUCHY PROBLEM OF THE HELMHOLTZ EQUATION [J]. Journal of Computational Mathematics, 2012, 30(2): 157-176. |
[11] | Xiufang Feng, Zhilin Li, Zhonghua Qiao. HIGH ORDER COMPACT FINITE DIFFERENCE SCHEMES FOR THE HELMHOLTZ EQUATION WITH DISCONTINUOUS COEFFICIENTS [J]. Journal of Computational Mathematics, 2011, 29(3): 324-340. |
[12] | Yanzhao Cao, Ran Zhang , Kai Zhang . Finite Element and Discontinuous Galerkin Method for Stochastic Helmholtz Equation in Two- and Three-Dimensions [J]. Journal of Computational Mathematics, 2008, 26(5): 702-715. |
[13] | Houde Han, Zhongyi Huang . A Tailored Finite Point Method for the Helmholtz Equation with High WaveNumbers in Heterogeneous Medium [J]. Journal of Computational Mathematics, 2008, 26(5): 728-739. |
[14] | Ali Yang, Liantang Wang . A Method for Solving the Inverse Scattering Problem for Shape and Impedance [J]. Journal of Computational Mathematics, 2008, 26(4): 624-632. |
[15] | Shangyou Zhang . On the P1 Powell-Sabin Divergence-Free Finite Element for the Stokes Equations [J]. Journal of Computational Mathematics, 2008, 26(3): 456-470. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||