• Original Articles • Previous Articles Next Articles
Ruihan Guo1, Liangyue Ji2, Yan Xu3
Ruihan Guo, Liangyue Ji, Yan Xu. HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION[J]. Journal of Computational Mathematics, 2016, 34(2): 135-158.
[1] S. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1084-1095.[2] S. Bartels and R. Müller, Quasi-optimal and robust a posteriori error estimates in L∞(L2) for the approximation of Allen-Cahn equations past singularities, Math. Comp., 80 (2011), 761-780.[3] A. Brandt, Multigrid techniques: 1984 guide with applications to fluid dynamics. GMD-Studien [GMD Studies], 85. Gesellschaft für Mathematik und Datenverarbeitung mbH, St. Augustin, 1984.[4] Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Spinger.[5] L.Q. Chen, Phase-field models for microstructure evolution, Ann. Rev. Mater. Res., 32 (2002), 113-140.[6] X.F. Chen, C.M. Elliott, A. Gardiner and J.J. Zhao, Convergence of numerical solutions to the Allen-Cahn equation, Appl. Anal., 69 (1998), 47-56.[7] J.W. Choi, H.G. Lee, D. Jeong and J. Kim, An unconditionally gradient stable numerical method for solving the Allen-Cahn equation, Physica A, 388 (2009), 1791-1803.[8] P. Ciarlet, The finite element method for elliptic problem, North Holland, 1975.[9] B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), 2440-2463.[10] B. Cockburn, G. Kanschat, I. Perugia and D. schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids, SIAM J. Numer. Anal., 39 (2001), 264-285.[11] B. Dong and C.-W. Shu, Analysis of a local discontinuous Galerkin method for fourth-order time-dependent problems. SIAM J. Numer. Anal., 47 (2009), 3240-3268.[12] A. Dutt, L. Greengard and V. Rokhlin, Spectral deferred correction methods for ordinary differential equations, BIT, 40 (2000), 241-266.[13] X.B. Feng, Y.K. Li, Analysis of interior penalty discontinuous Galerkin methods for the Allen- Cahn equation and the mean curvature flow, preprint, arXiv:1310.7504.[14] X.B. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows, Numer. Math., 94 (2003), 33-65.[15] X.B. Feng and H.J. Wu, A posteriori error estimates and an adaptive finite element method for the Allen-Cahn equation and the mean curvature flow, J. Sci. Comput., 24 (2005), 121-146.[16] X. Feng, H. Song, T. Tang, and J. Yang, Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation, Inverse Problems and Imaging (A special issue in honor of Tony Chan's 60th birthday) 7 (2013), 679-695.[17] X. Feng, T. Tang, and J. Yang, Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods, SIAM J. Sci. Comput., 37 (2015), A271-A294.[18] R. Guo and Y. Xu, Efficient solvers of discontinuous Galerkin discretization for the Cahn-Hilliard equations, J. Sci. Comput., 58 (2014), 380-408.[19] L. Ji, Y. Xu and J.K. Ryan, Accuracy-enhancement of discontinuous Galerkin solutions for convection-diffusion equations in multiple-dimensions, Math. Comp., 81 (2012), 1929-1950.[20] L. Ji, Y. Xu and J.K. Ryan, Negative-order norm estimates for nonlinear hyperbolic conservation laws, J. Sci. Comput, 54 (2013), 531-548.[21] Y. Li, H.G. Lee, D. Jeong and J. Kim, An unconditionally stable hybird numerical method for solving the Allen-Cahn equation, Computers and Mathematics with Applications, 60 (2010), 1591- 1606.[22] H. Liu and J. Yan, A local discontinuous Galerkin method for the Korteweg-de Vries equation with boundary effect, J. Comput. Phys., 215 (2006), 197-218.[23] M.L. Minion, Semi-implicit spectral deferred correction methods for ordinary differential equations, Commun. Math. Sci., 1 (2003), 471-500.[24] W.H. Reed and T.R. Hill, Triangular mesh method for the neutron transport equation, Technical report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.[25] J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, iscret. Contin. Dyn. Syst., 28 (2010), 1669-1691.[26] A.A. Wheeler, W.J. Boettinger and G.B. McFadden, Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev., A 45 (1992), 7424-7439.[27] Y. Xia, Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for the Cahn-Hilliard type equations, J. Comput. Phys., 227 (2007), 472-491.[28] Y. Xia, Y. Xu and C.-W. Shu, Efficient time discretization for local discontinuous Galerkin methods, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 677-693.[29] Y. Xia, Y. Xu and C.-W. Shu, Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system, Commun. Comput. Phys., 5 (2009), 821-835.[30] Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for two classes of two dimensional nonlinear wave equations, Physica D, 208 (2005), 21-58.[31] Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for high-order time-dependent partial differential equations, Communications in Computational Physics, 7 (2010), 1-46.[32] J. Yan and C.-W. Shu, A local discontinuous Galerkin method for KdV type equations, SIAM J. Numer. Anal., 40 (2002), 769-791.[33] X.F. Yang, Error analysis of stabilized semi-implicit method of Allen-Cahn equation, Discrete Contin. Dyn. Syst.-Ser. B, 11 (2009), 1057-1070.[34] J. Zhang and Q. Du, Numerical studies of discrete approximations to the Allen-Cahn equation in the sharp interface limit, SIAM J. Sci. Comput., 31 (2009), 3042-3063. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||