Previous Articles Next Articles
Serge Nicaise1, Christos Xenophontos2
Serge Nicaise, Christos Xenophontos. AN hp-FEM FOR SINGULARLY PERTURBED TRANSMISSION PROBLEMS[J]. Journal of Computational Mathematics, 2017, 35(2): 152-168.
[1] Feng Kang, Differential vs. integral equations and finite vs. infinite elements, Math. Numer. Sinica, 2:1(1980), 100-105.[2] N.S. Bakhvalov, Towards optimization of methods for solving boundary value problems in the presence of boundary layers, (in Russian), Zh. Vychisl. Mat. Mat. Fiz., 9(1969), 841-859.[3] R. Lin and M. Stynes, A balanced finite element method for singularly perturbed reaction-diffusion problems, SIAM J. Numer. Anal., 50:5(2012),2729-2743.[4] A. Maghnouji and S. Nicaise, Boundary layers for transmission problems with singularities, Electronic J. Diff. Eqs, 2006:14(2006), 1-16.[5] J.M. Melenk, On the robust exponential convergence of hp finite element methods for problems with boundary layers, IMA J. Num. Anal., 17(1997), 577-601.[6] J.M. Melenk, hp-Finite Element Methods for Singular Perturbations, Vol. 1796 of Springer Lecture Notes in Mathematics, Springer Verlag, 2002.[7] M.J. Melenk, C. Xenophontos and L. Oberbroeckling, Robust exponential convergence of hp-FEM for singularly perturbed systems of reaction-diffusion equations with multiple scales, IMA J. Num. Anal., 33:2(2013), 609-628.[8] M.J. Melenk, C. Xenophontos and L. Oberbroeckling, Analytic regularity for a singularly perturbed system of reaction-diffusion equations with multiple scales, Advances in Computational Mathematics, 39(2013), 367-394.[9] J.M. Melenk and C. Schwab, hp FEM for reaction diffusion equations I:Robust exponential convergence, SIAM J. Num. Anal., 35(1998), 1520-1557.[10] J.M. Melenk and C. Xenophontos, Robust exponential convergence of hp-FEM in balanced norms for singularly perturbed reaction-diffusion equations, Calcolo, 35(2016), 105-132.[11] J.J. Miller, E. O'Riordan and G.I. Shishkin, Fitted Numerical Methods For Singular Perturbation Problems, World Scientific, 1996.[12] S. Nicaise and C. Xenophontos, Finite element methods for a singularly perturbed transmission problem, J. Num. Math., 17, (2009), 245-275.[13] S. Nicaise and C. Xenophontos, Robust approximation of singularly perturbed delay differential equations by the hp finite element method, Comp. Meth. Appl. Math. 13(2013), 21-37.[14] S. Nicaise and C. Xenophontos, Convergence analysis of an hp Finite Element Method for singularly perturbed transmission problems in smooth domains, Num. Meth. PDEs, 39(2013), 367-394.[15] H.G. Roos and S. Franz, Error estimation in a balanced norm for a convection-diffusion problems with two different boundary layers, Calcolo, 51(2014), 423-440.[16] H.G. Roos and M. Schopf, Convergence and stability in balanced norms of finite element methods on Shishkin meshes for reaction-diffusion problems, ZAMM, 95(2016), 551-565.[17] H.G. Roos, M. Stynes and L. Tobiska, Robust numerical methods for singularly perturbed differential equations, Volume 24 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 2008.[18] C. Schwab, p/hp Finite Element Methods, Oxford University Press, 1998.[19] C. Schwab and M. Suri, The p and hp versions of the finite element method for problems with boundary layers, Math. Comp. 65(1996), 1403-1429.[20] G.I. Shishkin, Grid approximation of singularly perturbed boundary value problems with a regular boundary layer, Sov. J. Numer. Anal. Math. Model., 4(1989), 397-417. |
[1] | Christos Xenophontos, Lisa Oberbroeckling. ON THE FINITE ELEMENT APPROXIMATION OF SYSTEMS OF REACTION-DIFFUSION EQUATIONS BY $p/hp$ METHODS [J]. Journal of Computational Mathematics, 2010, 28(3): 386-400. |
[2] | Ishtiaq Ali, Hermann Brunner, Tao Tang. A Spectral Method for Pantograph-Type Delay Differential Equations and its Convergence Analysis [J]. Journal of Computational Mathematics, 2009, 27(2-3): 254-265. |
[3] | Igor Boglaev , Matthew Hardy . A MONOTONE DOMAINDECOMPOSITION ALGORITHM FOR SOLVING WEIGHTED AVERAGE APPROXIMATIONS TO NONLINEAR SINGULARLY PERTURBED PARABOLIC PROBLEMS [J]. Journal of Computational Mathematics, 2008, 26(1): 76-97. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||