Previous Articles Next Articles
Rikard Anton, David Cohen
Rikard Anton, David Cohen. EXPONENTIAL INTEGRATORS FOR STOCHASTIC SCHRÖDINGER EQUATIONS DRIVEN BY ITÔ NOISE[J]. Journal of Computational Mathematics, 2018, 36(2): 276-309.
[1] R. Anton, and D.Cohen, and S.Larsson, and X. Wang, Full discretisation of semi-linear stochastic wave Equations Driven by Multiplicative Noise, SIAM J. Numer. Anal., 54:2(2016), 1093-1119.[2] M. Barton-Smith, and A. Debussche, and L. Di Menza, Numerical study of two-dimensional stochastic NLS equations, Numer. Methods Partial Differential Equations, 21:4(2005), 810-842.[3] H. Berland, and A.L. Islas, and C.M. Schober, Conservation of phase space properties using exponential integrators on the cubic Schrödinger equation, J. Comput. Phys., 225:1(2007), 284-299,[4] A. de Bouard, and A. Debussche, Weak and strong order of convergence of a semidiscrete scheme for the stochastic nonlinear Schrödinger equation, Appl. Math. Optim., 54:3(2006), 369-399.[5] A. de Bouard, and A. Debussche, The stochastic nonlinear Schrödinger equation in H 1, Stochastic Anal. Appl., 21:1(2003), 97-126.[6] A. de Bouard, and A. Debussche, On the effect of a noise on the solutions of the focusing supercritical nonlinear Schrödinger equation, Probab. Theory Related Fields, 123:1(2002), 76-96.[7] A. de Bouard, and A. Debussche, A stochastic nonlinear Schrödinger equation with multiplicative noise, Comm. Math. Phys., 205:1(1999), 161-181.[8] A. de Bouard, and A. Debussche, and L. Di Menza, Theoretical and numerical aspects of stochastic nonlinear Schrödinger equations, Monte Carlo Methods Appl., 7:1-2(2001), 55-63.[9] T. Cazenave, and A. Haraux, An Introduction to Semilinear Evolution Equations, The Clarendon Press, Oxford University Press, New York. 1998[10] E. Celledoni, and D. Cohen, and B. Owren, Symmetric exponential integrators with an application to the cubic Schr dinger equation, Found. Comput. Math., 8:3(2008), 303-317.[11] D. Cohen, and L. Gauckler, Exponential integrators for nonlinear Schrdinger equations over long times, BIT, 52:4(2012), 877-903.[12] D. Cohen, and S. Larsson, and M. Sigg, A trigonometric method for the linear stochastic wave equation, SIAM J. Numer. Anal., 51:1(2013), 204-222,[13] D. Cohen, and L. Quer-Sardanyons, A fully discrete approximation of the one-dimensional stochastic wave equation, IMA J. Numer. Anal., 36:1(2016), 400-420.[14] G. Da Prato, and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.[15] A. de Bouard, and A. Debussche, A semi-discrete scheme for the stochastic nonlinear Schrödinger equation, Numer. Math., 96:4(2004), 733-770.[16] A. Debussche, and L. Di Menza, Numerical simulation of focusing stochastic nonlinear Schrödinger equations, Phys. D, 162:3-4(2002), 131-154.[17] E. Hebey, Nonlinear Analysis on Manifolds:Sobolev Spaces and Inequalities, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999.[18] M. Hochbruck, and C. Lubich, Exponential integrators for quantum-classical molecular dynamics, BIT, 39:4(1999), 620-645.[19] M. Hochbruck, and A. Ostermann, Exponential integrators, Acta Numer., 19(2010), 209-286.[20] A. Jentzen, and P.E. Kloeden, The numerical approximation of stochastic partial differential equations, Milan J. Math., 77(2009), 205-244.[21] J. Liu, A mass-preserving splitting scheme for the stochastic Schrödinger equation with multiplicative noise, IMA J. Numer. Anal., 33:4(2013), 1469-1479[22] J. Liu, Order of convergence of splitting schemes for both deterministic and stochastic nonlinear Schrödinger equations, SIAM J. Numer. Anal., 51:4(2013), 1911-1932.[23] G.J. Lord, and J. Rougemont, A numerical scheme for stochastic PDEs with Gevrey regularity, IMA J. Numer. Anal., 24:4(2004), 587-604.[24] G.J. Lord, and A. Tambue, Stochastic exponential integrators for the finite element discretization of SPDEs for multiplicative and additive noise, IMA J. Numer. Anal., 33:2(2013), 515-543.[25] C. Prévôt, and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Springer, Berlin, 2007.[26] X. Wang, An exponential integrator scheme for time discretization of nonlinear stochastic wave equation, J. Sci. Comput., (2014), 1-30.[27] B. Cano, and A. González-Pachón, Exponential time integration of solitary waves of cubic Schrödinger equation, Appl. Numer. Math., 91(2015), 26-45.[28] G. Dujardin, Exponential Runge-Kutta methods for the Schrödinger equation, Appl. Numer. Math., 59:8(2009), 1839-1857.[29] H. Berland, and B. Owren, and B. Skaflestad, Solving the nonlinear Schrdinger equation using exponential integrators, Modeling, Identification and Control, 27:4(2006), 201-218.[30] G. Dujardin, and E. Faou, Normal form and long time analysis of splitting schemes for the linear Schrödinger equation with small potential, Numer. Math., 108:2(2007), 223-262.[31] A. de Bouard, and A. Debussche, Blow-up for the stochastic nonlinear Schrödinger equation with multiplicative noise, Ann. Probab., 33:3(2005), 1078-1110.[32] C.M. Mora, and R. Rebolledo, Regularity of solutions to linear stochastic Schrödinger equations, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 10:2(2007), 237-259.[33] S. Jiang, and L. Wang, and J. Hong, Stochastic multi-symplectic integrator for stochastic nonlinear Schrödinger equation, Commun. Comput. Phys., 14:2(2013), 393-411.[34] A.H. Strømmen Melbø, and D.J. Higham, Numerical simulation of a linear stochastic oscillator with additive noise, Appl. Numer. Math., 51:1(2004), 89-99. |
[1] | Wei Zhang. STRONG CONVERGENCE OF THE EULER-MARUYAMA METHOD FOR A CLASS OF STOCHASTIC VOLTERRA INTEGRAL EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(4): 607-623. |
[2] | Xiang Xu, Jian Zhai. INVERSION OF TRACE FORMULAS FOR A STURM-LIOUVILLE OPERATOR [J]. Journal of Computational Mathematics, 2022, 40(3): 396-414. |
[3] | Siyuan Qi, Guangqiang Lan. STRONG CONVERGENCE OF THE EULER-MARUYAMA METHOD FOR NONLINEAR STOCHASTIC VOLTERRA INTEGRAL EQUATIONS WITH TIME-DEPENDENT DELAY [J]. Journal of Computational Mathematics, 2022, 40(3): 437-452. |
[4] | François Golse, Shi Jin, Thierry Paul. THE RANDOM BATCH METHOD FOR N-BODY QUANTUM DYNAMICS [J]. Journal of Computational Mathematics, 2021, 39(6): 808-922. |
[5] | Xiaobing Feng, Yukun Li, Yi Zhang. STRONG CONVERGENCE OF A FULLY DISCRETE FINITE ELEMENT METHOD FOR A CLASS OF SEMILINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH MULTIPLICATIVE NOISE [J]. Journal of Computational Mathematics, 2021, 39(4): 574-598. |
[6] | Xiaocui Li, Xu You. MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 130-146. |
[7] | Tingting Qin, Chengjian Zhang. A GENERAL CLASS OF ONE-STEP APPROXIMATION FOR INDEX-1 STOCHASTIC DELAY-DIFFERENTIAL-ALGEBRAIC EQUATIONS [J]. Journal of Computational Mathematics, 2019, 37(2): 151-169. |
[8] | Charles-Edouard Bréhier, Martin Hairer, Andrew M. Stuart. WEAK ERROR ESTIMATES FOR TRAJECTORIES OF SPDEs UNDER SPECTRAL GALERKIN DISCRETIZATION [J]. Journal of Computational Mathematics, 2018, 36(2): 159-182. |
[9] | Christoph Reisinger, Zhenru Wang. ANALYSIS OF MULTI-INDEX MONTE CARLO ESTIMATORS FOR A ZAKAI SPDE [J]. Journal of Computational Mathematics, 2018, 36(2): 202-236. |
[10] | Xiaocui Li, Xiaoyuan Yang. ERROR ESTIMATES OF FINITE ELEMENT METHODS FOR STOCHASTIC FRACTIONAL DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2017, 35(3): 346-362. |
[11] | Xiaoyuan Yang, Xiaocui Li, Ruisheng Qi, Yinghan Zhang. FULL-DISCRETE FINITE ELEMENT METHOD FOR STOCHASTIC HYPERBOLIC EQUATION [J]. Journal of Computational Mathematics, 2015, 33(5): 533-556. |
[12] | Tingchun Wang. OPTIMAL POINT-WISE ERROR ESTIMATE OF A COMPACT FINITE DIFFERENCE SCHEME FOR THE COUPLED NONLINEAR SCHRÖDINGER EQUATIONS [J]. Journal of Computational Mathematics, 2014, 32(1): 58-74. |
[13] | Fayong Zhang, Bo Han. THE FINITE DIFFERENCE METHOD FOR DISSIPATIVE KLEIN-GORDON-SCHR?DINGER EQUATIONS IN THREE SPACE DIMENSIONS [J]. Journal of Computational Mathematics, 2010, 28(6): 879-900. |
[14] | Nikolaos L. Tsitsas. ON BLOCK MATRICES ASSOCIATED WITH DISCRETE TRIGONOMETRIC TRANSFORMS AND THEIR USE IN THE THEORY OF WAVE PROPAGATION [J]. Journal of Computational Mathematics, 2010, 28(6): 864-878. |
[15] | Irene M. Gamba, Sri Harsha Tharkabhushanam. SHOCK AND BOUNDARY STRUCTURE FORMATION BY SPECTRAL-LAGRANGIAN METHODS FOR THE INHOMOGENEOUS BOLTZMANN TRANSPORT EQUATION [J]. Journal of Computational Mathematics, 2010, 28(4): 430-460. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||