Kun Li^{1}, Youngju Lee^{2}, Christina Starkey^{2}
Kun Li, Youngju Lee, Christina Starkey. A NEW BOUNDARY CONDITION FOR RATETYPE NONNEWTONIAN DIFFUSIVE MODELS AND THE STABLE MAC SCHEME[J]. Journal of Computational Mathematics, 2018, 36(4): 605626.
[1] W. Black, M. Graham, Slip, concentration fluctuations, and flow instability in sheared polymer solutions, Macromolecules, 34(2001), 57315733. [2] R. Sureshkumar, A. Beris, Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of timedependent viscoelastic flows, Journal of NonNewtonian Fluid Mechanics, 60(1995), 5380. [3] M.A. Hulsen, R. Fattal, R. Kupferman, Flow of viscoelastic fluids past a cylinder at high Weissenberg number:Stabilized simulations using matrix logarithms, Journal of NonNewtonian Fluid Mechanics, 127(2005), 2739. [4] P. Wapperom, M. Renardy, Numerical prediction of the boundary layers in the flow around a cylinder using a fixed velocity field, Journal NonNewtonian Fluid Mechanics, 125(2005), 3548. [5] M. Bajaj, M. Pasquali, J. Prakash, Coilstretch transition and the breakdown of computations for viscoelastic fluid flow around a confined cylinder, Journal of Rheology, 52(2008), 197. [6] J. Oldroyd, On the formulation of rheological equations of state, Proceedings of the Royal Society, A200(1950), 523541. [7] J. Oldroyd, NonNewtonian effects in steady motion of some idealized elastoviscous liquids, Proc. R. Soc. A, 245(1958), 278297. [8] P. Oliveira, Alternative derivation of differential constitutive equations of the oldroydb model type, Journal NonNewtonian Fluid Mechanics, 160(2009), 4046. [9] R. Owens, T. Phillips, Computational Rheology, Imperial College Press, London, 2002. [10] J. Barrett, E. Süli, Existence of global weak solutions to some regularized kinetic models of dilute polymers, SIAM Multiscale Modeling and Simulation, 6(2007), 506546. [11] T. Li, P. Zhang, Mathematical analysis of multiscale models of complex fluids, Communications in Mathematical Sciences, 5(2007), 151. [12] A.V. Bhave, R.C. Armstrong, R.A. Brown, Kinetic theory and rheology of dilute, nonhomogeneous polymer solutions, Journal of Chemical Physics, 95(1991), 29883000. [13] J. Barrett, C. Schwab, E. Süli, Existence of global weak solutions for some polymeric flow models, Mathematical Models and Methods in Applied Sciences, 15(2005), 939. [14] J. Barrett, E. Süli, Existence of global weak solutions to dumbbell models for dilute polymers with microscopic cutoff, Mathematical models and methods in applied sciences, 18(2008), 935971. [15] J. Barrett, E. Suli, Numerical approximation of corotational dumbbell models for dilute polymers, IMA Journal of Numerical Analysis, 29(2009), 937959. [16] P. Constantin, M. Kliegl, Note on global regularity for twodimensional oldroydb fluids with diffusive stress, Archive for Rational Mechanics and Analysis, (2012), 116. [17] A.W. ElKareh, L. Leal, Existence of solutions for all deborah numbers for a nonnewtonian model modified to include diffusion, Journal NonNewtonian Fluid Mechanics, 33(1989), 257287. [18] A. Beris, B. Edwards, Thermodynamics of Flow Systems, with Internal Mocrostructure, Oxford Science Publication, 1994. [19] A. ElKareh, L. Gary Leal, Existence of solutions for all Deborah numbers for a nonNewtonian model modified to include diffusion, Journal of NonNewtonian Fluid Mechanics, 33(1989), 257287. [20] C. Dimitropoulos, R. Sureshkumar, A. Beris, Direct numerical simulation of viscoelastic turbulent channel flow exhibiting drag reduction:effect of the variation of rheological parameters, Journal of nonnewtonian fluid mechanics, 79(1998), 433468. [21] C. Dimitropoulos, R. Sureshkumar, A. Beris, R. Handler, Budgets of Reynolds stress, kinetic energy and streamwise enstrophy in viscoelastic turbulent channel flow, Physics of Fluids, 13(2001), 10161027. [22] P. Ilg, E. DeAngelis, I. Karlin, C. Casciola, S. Succi, Polymer dynamics in wall turbulent flow, Europhysics Letters, 58(2002), 616622. [23] T. Min, J. Yoo, H. Choi, Effect of spatial discretization schemes on numerical solutions of viscoelastic fluid flows, Journal of nonnewtonian fluid mechanics, 100(2001), 2747. [24] L.P. Cook, L.F. Rossi, Slippage and migration in models of dilute wormlike micellar solutions and polymeric fluids, Journal of NonNewtonian Fluid Mechanics, 116(2004), 347369. [25] R.G. Larson, Flowinduced mixing, demixing, and phase transitions in polymeric fluids, Rheologica Acta, 31(1992), 497520. [26] G. Picard, A. Ajdari, L. Bocquet, F.M.C. Lequeux, Simple model for heterogeneous flows of yield stress fluids, Phys. Rev. E, 66(2002), 051501. [27] L.F. Rossi, G. McKinley, L. Cook, Slippage and migration in TaylorCouette flow of a model for dilute wormlike micellar solutions, Journal of NonNewtonian Fluid Mechanics, 136(2006), 7992. [28] H. Yu, P. Zhang, A kinetichydrodynamic simulation of microstructure of liquid crystal polymers in plane shear flow, Journal NonNewtonian Fluid Mechanics, 141(2007), 116127. [29] F. Greco, R.C. Ball, Shearband formation in a nonnewtonian fluid model with a constitutive instability, Journal of NonNewtonian Fluid Mechanics, 69(1997), 195206. [30] P. Olmsted, O. Radulescu, C. Lu, JohnsonSegalman model with a diffusion term in cylindrical Couette flow, Journal of Rheology, 44(2000), 257. [31] Black, William B. and Graham, Michael D., Slip, concentration fluctuations, and flow instability in sheared polymer solutions, Macromolecules, 34(2001), 57315733. [32] R. Peyret, T. Taylor, Computational Methods for Fluid Flow, Springer Series in Computational Physics, 1983. [33] M. Griebel, T. Dornseifer, T. Neunhoeffer, Numerical Simulation in Fluid Dynamics:a Practical Introduction, SIAM, 1997. [34] S. Berti, A. Bistagnino, G. Boffetta, A. Celani and S. Mussacchio, Advances in Turbulence XI, SpringVerlag, 2008. [35] C.Y.D. Lu, P. Olmsted, R. Ball, Effects of nonlocal stress on the deformation of shear banding flow, Phys. Rev. Lett., 24(2000), 642645. [36] R. Bird, C. Curtiss, R. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Volume 2:Kinetic Theory, Weiley Interscience, New York, 1987. [37] A. Peterlin, Hydrodynamics of macromolecules in a velocity field with longitudinal gradient, Journal of Polymer Science Part B:Polymer Letters, 4(1966), 287291. [38] M. Chilcott, J. Rallison, Creeping flow of dilute polymer solutions past cylinders and spheres, Journal of NonNewtonian Fluid Mechanics, 29(1988), 381432. [39] Y.J. Lee, Modeling and Simulations of NonNewtonian Fluid Flows, PhD Thesis, The Pennsylvania State University, 2004. [40] Y.J. Lee, J. Xu, New formulations, positivity preserving discretizations and stability analysis for nonNewtonian flow models, Computer Methods in Applied Mechanics and Engineering, 195(2006), 11801206. [41] Y.J. Lee, J. Xu, C. Zhang, Stable finite element discretizations for nonNewtonian flow models:Applications to viscoelasticity, Handbook of Numerical Analysis Vol. 16, Numerical Methods for NonNewtonian Fluids Vol. 16, (2009). [42] H. AbouKandil, G. Freiling, V. Ionescu, G. Jank, Matrix Riccati Equations:In Control and Systems Theory, Birkhauser, 2003. [43] S. Kesavan, Topics in Functional Analysis and Applications, John Wiley & Sons, 1989. [44] P. Stewart, N. Lay, M. Sussman, M. Ohta, An improved sharp interface method for viscoelastic and viscous twophase flows, Journal of Scientific Computing, 35(2008), 4361. [45] D.N. Arnold, Numerical Analysis of Differential Equations, University of Minnesota, 2009. [46] W. E, J. Liu, Vorticity boundary condition and related issues for finite difference schemes, Journal of Computational Physics, 124(1996), 368382(15). [47] R. Fattal, R. Kupferman, Constitutive laws for the matrixlogarithm of the conformation tensor, Journal of NonNewtonian Fluid Mechanics, 124(2004), 281285. 
[1]  Jonas Bünger, Neeraj Sarna, Manuel Torrilhon. STABLE BOUNDARY CONDITIONS AND DISCRETIZATION FOR P_{N} EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(6): 9771003. 
[2]  Jie Yang, Guannan Zhang, Weidong Zhao. A FIRSTORDER NUMERICAL SCHEME FOR FORWARDBACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS IN BOUNDED DOMAINS [J]. Journal of Computational Mathematics, 2018, 36(2): 237258. 
[3]  Jiwei Zhang, Zhenli Xu, Xiaonan Wu, Desheng Wang. STABILITY ANALYSIS FOR NONLINEAR SCHRÖDINGER EQUATIONS WITH NONLINEAR ABSORBING BOUNDARY CONDITIONS [J]. Journal of Computational Mathematics, 2017, 35(1): 118. 
[4]  Qian Zhang, Ran Zhang. A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR SECONDORDER ELLIPTIC EQUATIONS WITH ROBIN BOUNDARY CONDITIONS [J]. Journal of Computational Mathematics, 2016, 34(5): 532548. 
[5]  Kwangil Kim, Yonghai Li. CONVERGENCE OF FINITE VOLUME SCHEMES FOR HAMILTONJACOBI EQUATIONS WITH DIRICHLET BOUNDARY CONDITIONS [J]. Journal of Computational Mathematics, 2015, 33(3): 227247. 
[6]  V. Thomée, A.S. Vasudeva Murthy. FINITE DIFFERENCE METHODS FOR THE HEAT EQUATION WITH A NONLOCAL BOUNDARY CONDITION [J]. Journal of Computational Mathematics, 2015, 33(1): 1732. 
[7]  Malte Braack, Piotr Boguslaw Mucha. DIRECTIONAL DONOTHING CONDITION FOR THE NAVIERSTOKES EQUATIONS [J]. Journal of Computational Mathematics, 2014, 32(5): 507521. 
[8]  Benyu Guo, Tao Sun, Chao Zhang. SPECTRAL AND SPECTRAL ELEMENT METHODS FOR HIGH ORDER PROBLEMS WITH MIXED BOUNDARY CONDITIONS [J]. Journal of Computational Mathematics, 2014, 32(4): 392411. 
[9]  Wensheng Zhang, Eric T. Chung, Chaowei Wang. STABILITY FOR IMPOSING ABSORBING BOUNDARY CONDITIONS IN THE FINITE ELEMENT SIMULATION OF ACOUSTIC WAVE PROPAGATION [J]. Journal of Computational Mathematics, 2014, 32(1): 120. 
[10]  Rikard Ojala. A ROBUST AND ACCURATE SOLVER OF LAPLACE’S EQUATION WITH GENERAL BOUNDARY CONDITIONS ON GENERAL DOMAINS IN THE PLANE [J]. Journal of Computational Mathematics, 2012, 30(4): 433448. 
[11]  Xiaonan Wu, Jiwei Zhang. HIGHORDER LOCAL ABSORBING BOUNDARY CONDITIONS FOR HEAT EQUATION IN UNBOUNDED DOMAINS [J]. Journal of Computational Mathematics, 2011, 29(1): 7490. 
[12]  Kaj Nyströ, m, Thomas Ö, nskog. WEAK APPROXIMATION OF OBLIQUELY REFLECTED DIFFUSIONS IN TIMEDEPENDENT DOMAINS [J]. Journal of Computational Mathematics, 2010, 28(5): 579605. 
[13] 
Xianmin Xu and Zhiping Li.
A POSTERIORI ERROR ESTIMATES OF A NONCONFORMING FINITE ELEMENT METHOD FOR PROBLEMS WITH ARTIFICIAL BOUNDARY CONDITIONS [J]. Journal of Computational Mathematics, 2009, 27(6): 677696. 
[14]  Chunxiong Zheng . APPROXIMATION, STABILITY AND FAST EVALUATION OF EXACT ARTIFICIAL BOUNDARY CONDITION FOR THE ONEDIMENSIONAL HEAT EQUATION [J]. Journal of Computational Mathematics, 2007, 25(6): 730745. 
[15]  Thomas Hagstrom, Stephen Lau. RADIATION BOUNDARY CONDITIONS FOR MAXWELL'S EQUATIONS: A REVIEW OF ACCURATE TIMEDOMAIN FORMULATIONS [J]. Journal of Computational Mathematics, 2007, 25(3): 305336. 
Viewed  
Full text 


Abstract 

