Liang Ge1, Tongjun Sun2
Liang Ge, Tongjun Sun. A SPARSE GRID STOCHASTIC COLLOCATION AND FINITE VOLUME ELEMENT METHOD FOR CONSTRAINED OPTIMAL CONTROL PROBLEM GOVERNED BY RANDOM ELLIPTIC EQUATIONS[J]. Journal of Computational Mathematics, 2018, 36(2): 310-330.
[1] R. Adams, Sobolev Spaces, Academic, New York, 1975.[2] I. Babuska, P. Chatzipantelidis, On solving elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg., 191(2002), 4093-4122.[3] I. Babuska, K. Liu and R. Tempone, Solving stochastic partial differential equations based on the experimental data, Math. Models Methods Appl. Sci., 13:3(2003), 415-444.[4] I. Babuska, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45:3(2007), 1005-1034.[5] I. Babuska, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM Rev., 52:2(2010), 317-355.[6] I. Babuska, R. Tempone and G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42:2(2004), 800-825.[7] V. Barthelmann, E. Novak and K. Ritter, High dimensional polynomial interpolation on sparse grids, Adv. Comput. Math., 12(2000), 273-288.[8] C.W. Clenshaw, A.R. Curtis, A method for numerical integration on an automatic computer, Numer. Math., 2(1960), 197-205.[9] I. Doltsinis, Inelastic deformation processes with random parametersmethods of analysis and design, Comput. Methods Appl. Mech. Engrg., 192(2003), 2405-2423.[10] R.E. Ewing, T. Lin and Y.P. Lin, On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM J. Numer. Anal., 39(2002), 1865-1888.[11] R. Ghanem, P.D. Spanos, Stochastic Finite Elements:A Spectral Approach, Springer-Verlag, Berlin, 1991.[12] R. Glowinski, J.L. Lions, Exact and Approximate Controllability for Distributed Parameter Systems, Cambridge University Press, Cambridge, 1996.[13] L.S. Hou, J. Lee and H. Manouzi, Finite element approximations of stochastic optimal control problems constrained by stochastic elliptic PDEs, J. Math. Anal. Appl., 384(2011), 87-103.[14] M. Kleiber, T.D. Hien, The Stochastic Finite Element Method, John Wiley, Chichester, 1992.[15] H.C. Lee, J. Lee, A stochastic Galerkin method for stochastic control problems, Commum. Comput. Phys., 14:1(2013), 77-106.[16] R.H. Li, Z.Y. Chen and W. Wei, Generalized Difference Memthods for Differential Equations:Numerical Analysis of Finite Volume Methods, Marcel Dekker, New York, 2000.[17] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, SpringerVerlag, Berlin, 1971.[18] W.B. Liu, D. Tiba, Error estimates for the finite element approximation of a class of nonlinear optimal control problems, J. Numer. Func. Optim., 22(2001), 953-972.[19] W.B. Liu, N.N. Yan, A posteriori error estimates for convex boundary control problems, SIAM Numer. Anal., 39(2001), 73-99.[20] W.B. Liu, N.N. Yan, Adaptive Finite Element Methods for Optimal Control Governed by PDEs, Series in Information and Computational Science 41, Science Press, Beijing, 2008.[21] W.B. Liu, D.P. Yang, L. Yuan and C.Q. Ma, Finite elemnet approximation of an optimal control problem with integral state constraint, SIAM J. Numer. Anal., 48:3(2010), 1163-1185.[22] X. Luo, Y. Chen and Y. Huang, Some error estimates of finite volume element method for elliptic optimal control problems, Int. J. Numer. Anal. Mod., 10:3(2013), 697-711.[23] X. Luo, Y. Chen and Y. Huang, A priori error analysis of finite volume element method for hyperbolic optimal control problems, Sci. China Math., 56:5(2013), 901-914.[24] U. Mosco, Approximation of solution of some variational inequalities, Ann. Sculoa Normale Sup., 21:3(1967), 373-394.[25] F. Nobile, R. Tempone, Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients, Int. J. Numer. Meth. Engng., 80(2009), 979-1006.[26] F. Nobile, R. Tempone and C.G. Webster, A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46:5(2008), 2309-2345.[27] F. Nobile, R. Tempone and C.G. Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46:5(2008), 2411-2442.[28] M. Papadrakakis, V. Papadopoulos, Robust and efficient methods for stochastic finite element analysis using Monte Carlo simulation, Comput. Methods Appl. Mech. Engrg., 134(1996), 325-340.[29] B. Øksendal, Stochastic Differential Equations, An Introducation with Application, 5th ed., Spring-Verlag, Berlin, 1998.[30] W.F. Shen, L. Ge and D.P. Yang, Finite element methods for optimal control problems governed by linear quasi-parabolic integer-differential equations, Int. J. Numer. Anal. Mod., 10:3(2013), 536-550.[31] W.F. Shen, T.J. Sun, B.X. Gong and W.B. Liu, Stochastic Galerkin method for constrained optimal control problem governed by an elliptic integro-differential PDE with stochastic coefficients, Int. J. Numer.Anal. Mod., 12:4(2015), 593-616.[32] T.J. Sun, Discontinuous Galerkin finite element method with interior penalties for convection diffusion optimal control problem, Int. J. Numer. Anal. Mod., 7:1(2010), 87-107.[33] T.J. Sun, L. Ge and W.B. Liu, Equivalent a posteriori error estimates for a constrained optimal control problem governed by parabolic equations, Int. J. Numer. Anal. Mod., 10:1(2013), 1-23.[34] T.J. Sun, W.F. Shen, B.X. Gong and W.B. Liu, A priori error estimate of stochastic Galerkin method for optimal control problem governed by stochastic elliptic PDE with constrained control, J. Sci. Copmut., 67:2(2016), 405-431.[35] F. Tröltzsch, Optimal Control of Partial Differential Equations:Theory, Methods, and Applications, American Mathematical Society, Providence, Rhode Island, 2010.[36] G. W. Wasilkowski, H. Wozniakowski, Explicit cost bounds of algorithms for multivariate tensor product problems, J. Complexity, 11(1995), 1-56.[37] N. Wiener, The homogeneous chaos, Amer. J. Math., 60(1938), 897-936.[38] D. Xiu, J.S. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27:3(2005), 1118-1139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||