Previous Articles Next Articles
Davod Hezari1, Vahid Edalatpour1, Hadi Feyzollahzadeh2, Davod Khojasteh Salkuyeh1
Davod Hezari, Vahid Edalatpour, Hadi Feyzollahzadeh, Davod Khojasteh Salkuyeh. ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER[J]. Journal of Computational Mathematics, 2019, 37(1): 18-32.
[1] Z.Z. Bai, Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems, Appl. Math. Comput., 109(2000), 273-285.[2] Z.Z. Bai, G.H. Golub, Accelerated Hermitian and skew-Hermitian splitting methods for saddlepoint problems, IMA J. Numer. Anal., 27(2007), 1-23.[3] Z.Z. Bai, G.H. Golub, L.Z. Lu, J.F. Yin, Block triangular and skew-Hermitian splitting methods for positive-definite linear systems, SIAM J. Sci. Comput., 26(2004), 844-863.[4] Z.Z. Bai, G.H. Golub, M.K. Ng, Hermitian and skew-Hermitian splitting methods for nonHermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24(2003), 603-626.[5] Z.Z. Bai, G.H. Golub, J.Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98(2004), 1-32.[6] Z.Z. Bai, J.F. Yin, Y.F. Su, A shift-splitting preconditioner for non-Hermitian positive definite matrices, J. Comput. Math., 24(2006), 539-552.[7] M. Benzi, G.H. Golub, A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl., 26(2004), 20-41.[8] M. Benzi, G.H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14(2005), 1-137.[9] Y. Cao, J.L. Dong, Y.M. Wang, A relaxed deteriorated PSS preconditioner for nonsymmetric saddle point problems from the steady Navier-Stokes equation, J. Comput. Appl. Math., 273(2015), 41-60.[10] Y. Cao, J. Du, Q. Niu, Shift-splitting preconditioners for saddle point problems, J. Comput. Appl. Math., 272(2014), 239-250.[11] Y. Cao, L.Q. Yao, M.Q. Jiang, Q. Niu, A relaxed HSS preconditioner for saddle point problems from mesh free discretization, J. Comput Math. 31(2013), 398-421.[12] H.C. Elman, A. Ramage, D.J. Silvester, IFISS:A Matlab toolbox for modelling incompressible flow, ACM Trans. Math. Software., 33(2007), Article 14.[13] Z.G Huang, L.G Wang, Z. Xu, J.J Cui, A generalized variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems, Numr. Algor. 75(2017) 1161-1191.[14] J.Y. Pan, M.K. Ng, Z.Z. Bai, New preconditioners for saddle point problems, Appl. Math. Comput., 172(2006), 762-771.[15] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM:Philadelphia, 2003.[16] D.K. Salkuyeh, M. Masoudi, A new relaxed HSS preconditioner for saddle point problems, Numer. Algor., 74(2017) 781-795.[17] E.D. Sturler, J. Liesen, Block-diagonal and constraint preconditioners for nonsymmetric indenite linear systems, SIAM, J. Sci. Comput., 26(2005), 1598-619.[18] J. Zhang, C. Gu, A variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems, BIT Numer. Math., 2016, doi:10.1007/s10543-015-0590-9. |
[1] | Mei Yang, Ren-Cang Li. HEAVY BALL FLEXIBLE GMRES METHOD FOR NONSYMMETRIC LINEAR SYSTEMS [J]. Journal of Computational Mathematics, 2022, 40(5): 711-727. |
[2] | Lu Zhang, Qifeng Zhang, Hai-wei Sun. A FAST COMPACT DIFFERENCE METHOD FOR TWO-DIMENSIONAL NONLINEAR SPACE-FRACTIONAL COMPLEX GINZBURG-LANDAU EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(5): 708-732. |
[3] | Yifen Ke, Changfeng Ma. MODIFIED ALTERNATING POSITIVE SEMIDEFINITE SPLITTING PRECONDITIONER FOR TIME-HARMONIC EDDY CURRENT MODELS [J]. Journal of Computational Mathematics, 2021, 39(5): 733-754. |
[4] | Daniele Boffi, Zhongjie Lu, Luca F. Pavarino. ITERATIVE ILU PRECONDITIONERS FOR LINEAR SYSTEMS AND EIGENPROBLEMS [J]. Journal of Computational Mathematics, 2021, 39(4): 633-654. |
[5] | Kaibo Hu, Ragnar Winther. WELL-CONDITIONED FRAMES FOR HIGH ORDER FINITE ELEMENT METHODS [J]. Journal of Computational Mathematics, 2021, 39(3): 333-357. |
[6] | Yuting Chen, Mingyuan Cao, Yueting Yang, Qingdao Huang. AN ADAPTIVE TRUST-REGION METHOD FOR GENERALIZED EIGENVALUES OF SYMMETRIC TENSORS [J]. Journal of Computational Mathematics, 2021, 39(3): 358-374. |
[7] | Maohua Ran, Chengjian Zhang. A HIGH-ORDER ACCURACY METHOD FOR SOLVING THE FRACTIONAL DIFFUSION EQUATIONS [J]. Journal of Computational Mathematics, 2020, 38(2): 239-253. |
[8] | Liang Chen, Defeng Sun, Kim-Chuan Toh, Ning Zhang. A UNIFIED ALGORITHMIC FRAMEWORK OF SYMMETRIC GAUSS-SEIDEL DECOMPOSITION BASED PROXIMAL ADMMS FOR CONVEX COMPOSITE PROGRAMMING [J]. Journal of Computational Mathematics, 2019, 37(6): 739-757. |
[9] | Kai Liu, Guiding Gu. IMPROVED PMHSS ITERATION METHODS FOR COMPLEX SYMMETRIC LINEAR SYSTEMS [J]. Journal of Computational Mathematics, 2019, 37(2): 278-296. |
[10] | Yang Cao, Zhiru Ren, Linquan Yao. IMPROVED RELAXED POSITIVE-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONERS FOR SADDLE POINT PROBLEMS [J]. Journal of Computational Mathematics, 2019, 37(1): 95-111. |
[11] | Xinhui Shao, Chen Li, Tie Zhang, Changjun Li. A MODIFIED PRECONDITIONER FOR PARAMETERIZED INEXACT UZAWA METHOD FOR INDEFINITE SADDLE POINT PROBLEMS [J]. Journal of Computational Mathematics, 2018, 36(4): 579-590. |
[12] | Davide Forti, Alfio Quarteroni, Simone Deparis. A PARALLEL ALGORITHM FOR THE SOLUTION OF LARGE-SCALE NONCONFORMING FLUID-STRUCTURE INTERACTION PROBLEMS IN HEMODYNAMICS [J]. Journal of Computational Mathematics, 2017, 35(3): 363-380. |
[13] | Na Huang, Changfeng Ma. POSITIVE DEFINITE AND SEMI-DEFINITE SPLITTING METHODS FOR NON-HERMITIAN POSITIVE DEFINITE LINEAR SYSTEMS [J]. Journal of Computational Mathematics, 2016, 34(3): 300-316. |
[14] | Xiaofei Zhao. AN EXPONENTIAL WAVE INTEGRATOR PSEUDOSPECTRAL METHOD FOR THE SYMMETRIC REGULARIZED-LONG-WAVE EQUATION [J]. Journal of Computational Mathematics, 2016, 34(1): 49-69. |
[15] | Kai Liu, Xinyuan Wu. HIGH-ORDER SYMPLECTIC AND SYMMETRIC COMPOSITION METHODS FOR MULTI-FREQUENCY AND MULTI-DIMENSIONAL OSCILLATORY HAMILTONIAN SYSTEMS [J]. Journal of Computational Mathematics, 2015, 33(4): 356-378. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||