Previous Articles     Next Articles

ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER

Davod Hezari1, Vahid Edalatpour1, Hadi Feyzollahzadeh2, Davod Khojasteh Salkuyeh1   

  1. 1. Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran;
    2. Department of Mathematical and Computer Science, Technical Faculty, University of Bonab, Bonab, Iran
  • Received:2016-08-28 Revised:2017-05-31 Online:2019-01-15 Published:2019-01-15
  • Supported by:

    The authors are grateful to the anonymous referees and the editor of the journal for their valuable comments and suggestions which improved the quality of this paper. The work of Davod Khojasteh Salkuyeh is partially supported by University of Guilan.

Davod Hezari, Vahid Edalatpour, Hadi Feyzollahzadeh, Davod Khojasteh Salkuyeh. ON THE GENERALIZED DETERIORATED POSITIVE SEMI-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONER[J]. Journal of Computational Mathematics, 2019, 37(1): 18-32.

For nonsymmetric saddle point problems, Huang et al. in[Numer. Algor. 75 (2017), pp. 1161-1191] established a generalized variant of the deteriorated positive semi-definite and skew-Hermitian splitting (GVDPSS) preconditioner to expedite the convergence speed of the Krylov subspace iteration methods like the GMRES method. In this paper, some new convergence properties as well as some new numerical results are presented to validate the theoretical results.

CLC Number: 

[1] Z.Z. Bai, Sharp error bounds of some Krylov subspace methods for non-Hermitian linear systems, Appl. Math. Comput., 109(2000), 273-285.

[2] Z.Z. Bai, G.H. Golub, Accelerated Hermitian and skew-Hermitian splitting methods for saddlepoint problems, IMA J. Numer. Anal., 27(2007), 1-23.

[3] Z.Z. Bai, G.H. Golub, L.Z. Lu, J.F. Yin, Block triangular and skew-Hermitian splitting methods for positive-definite linear systems, SIAM J. Sci. Comput., 26(2004), 844-863.

[4] Z.Z. Bai, G.H. Golub, M.K. Ng, Hermitian and skew-Hermitian splitting methods for nonHermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24(2003), 603-626.

[5] Z.Z. Bai, G.H. Golub, J.Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98(2004), 1-32.

[6] Z.Z. Bai, J.F. Yin, Y.F. Su, A shift-splitting preconditioner for non-Hermitian positive definite matrices, J. Comput. Math., 24(2006), 539-552.

[7] M. Benzi, G.H. Golub, A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl., 26(2004), 20-41.

[8] M. Benzi, G.H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14(2005), 1-137.

[9] Y. Cao, J.L. Dong, Y.M. Wang, A relaxed deteriorated PSS preconditioner for nonsymmetric saddle point problems from the steady Navier-Stokes equation, J. Comput. Appl. Math., 273(2015), 41-60.

[10] Y. Cao, J. Du, Q. Niu, Shift-splitting preconditioners for saddle point problems, J. Comput. Appl. Math., 272(2014), 239-250.

[11] Y. Cao, L.Q. Yao, M.Q. Jiang, Q. Niu, A relaxed HSS preconditioner for saddle point problems from mesh free discretization, J. Comput Math. 31(2013), 398-421.

[12] H.C. Elman, A. Ramage, D.J. Silvester, IFISS:A Matlab toolbox for modelling incompressible flow, ACM Trans. Math. Software., 33(2007), Article 14.

[13] Z.G Huang, L.G Wang, Z. Xu, J.J Cui, A generalized variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems, Numr. Algor. 75(2017) 1161-1191.

[14] J.Y. Pan, M.K. Ng, Z.Z. Bai, New preconditioners for saddle point problems, Appl. Math. Comput., 172(2006), 762-771.

[15] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM:Philadelphia, 2003.

[16] D.K. Salkuyeh, M. Masoudi, A new relaxed HSS preconditioner for saddle point problems, Numer. Algor., 74(2017) 781-795.

[17] E.D. Sturler, J. Liesen, Block-diagonal and constraint preconditioners for nonsymmetric indenite linear systems, SIAM, J. Sci. Comput., 26(2005), 1598-619.

[18] J. Zhang, C. Gu, A variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems, BIT Numer. Math., 2016, doi:10.1007/s10543-015-0590-9.
[1] Mei Yang, Ren-Cang Li. HEAVY BALL FLEXIBLE GMRES METHOD FOR NONSYMMETRIC LINEAR SYSTEMS [J]. Journal of Computational Mathematics, 2022, 40(5): 711-727.
[2] Lu Zhang, Qifeng Zhang, Hai-wei Sun. A FAST COMPACT DIFFERENCE METHOD FOR TWO-DIMENSIONAL NONLINEAR SPACE-FRACTIONAL COMPLEX GINZBURG-LANDAU EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(5): 708-732.
[3] Yifen Ke, Changfeng Ma. MODIFIED ALTERNATING POSITIVE SEMIDEFINITE SPLITTING PRECONDITIONER FOR TIME-HARMONIC EDDY CURRENT MODELS [J]. Journal of Computational Mathematics, 2021, 39(5): 733-754.
[4] Daniele Boffi, Zhongjie Lu, Luca F. Pavarino. ITERATIVE ILU PRECONDITIONERS FOR LINEAR SYSTEMS AND EIGENPROBLEMS [J]. Journal of Computational Mathematics, 2021, 39(4): 633-654.
[5] Kaibo Hu, Ragnar Winther. WELL-CONDITIONED FRAMES FOR HIGH ORDER FINITE ELEMENT METHODS [J]. Journal of Computational Mathematics, 2021, 39(3): 333-357.
[6] Yuting Chen, Mingyuan Cao, Yueting Yang, Qingdao Huang. AN ADAPTIVE TRUST-REGION METHOD FOR GENERALIZED EIGENVALUES OF SYMMETRIC TENSORS [J]. Journal of Computational Mathematics, 2021, 39(3): 358-374.
[7] Maohua Ran, Chengjian Zhang. A HIGH-ORDER ACCURACY METHOD FOR SOLVING THE FRACTIONAL DIFFUSION EQUATIONS [J]. Journal of Computational Mathematics, 2020, 38(2): 239-253.
[8] Liang Chen, Defeng Sun, Kim-Chuan Toh, Ning Zhang. A UNIFIED ALGORITHMIC FRAMEWORK OF SYMMETRIC GAUSS-SEIDEL DECOMPOSITION BASED PROXIMAL ADMMS FOR CONVEX COMPOSITE PROGRAMMING [J]. Journal of Computational Mathematics, 2019, 37(6): 739-757.
[9] Kai Liu, Guiding Gu. IMPROVED PMHSS ITERATION METHODS FOR COMPLEX SYMMETRIC LINEAR SYSTEMS [J]. Journal of Computational Mathematics, 2019, 37(2): 278-296.
[10] Yang Cao, Zhiru Ren, Linquan Yao. IMPROVED RELAXED POSITIVE-DEFINITE AND SKEW-HERMITIAN SPLITTING PRECONDITIONERS FOR SADDLE POINT PROBLEMS [J]. Journal of Computational Mathematics, 2019, 37(1): 95-111.
[11] Xinhui Shao, Chen Li, Tie Zhang, Changjun Li. A MODIFIED PRECONDITIONER FOR PARAMETERIZED INEXACT UZAWA METHOD FOR INDEFINITE SADDLE POINT PROBLEMS [J]. Journal of Computational Mathematics, 2018, 36(4): 579-590.
[12] Davide Forti, Alfio Quarteroni, Simone Deparis. A PARALLEL ALGORITHM FOR THE SOLUTION OF LARGE-SCALE NONCONFORMING FLUID-STRUCTURE INTERACTION PROBLEMS IN HEMODYNAMICS [J]. Journal of Computational Mathematics, 2017, 35(3): 363-380.
[13] Na Huang, Changfeng Ma. POSITIVE DEFINITE AND SEMI-DEFINITE SPLITTING METHODS FOR NON-HERMITIAN POSITIVE DEFINITE LINEAR SYSTEMS [J]. Journal of Computational Mathematics, 2016, 34(3): 300-316.
[14] Xiaofei Zhao. AN EXPONENTIAL WAVE INTEGRATOR PSEUDOSPECTRAL METHOD FOR THE SYMMETRIC REGULARIZED-LONG-WAVE EQUATION [J]. Journal of Computational Mathematics, 2016, 34(1): 49-69.
[15] Kai Liu, Xinyuan Wu. HIGH-ORDER SYMPLECTIC AND SYMMETRIC COMPOSITION METHODS FOR MULTI-FREQUENCY AND MULTI-DIMENSIONAL OSCILLATORY HAMILTONIAN SYSTEMS [J]. Journal of Computational Mathematics, 2015, 33(4): 356-378.
Viewed
Full text


Abstract