Maohua Ran^{1,2}, Chengjian Zhang^{3}
[1] W. Deng, B. Li, W. Tian, P. Zhang, Boundary problems for the fractional and tempered fractional operators, Multiscale Model. Simul., 16:1(2018), 125149. [2] C. Çelik, M. Duman, CrankNicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231:4(2012), 17431750. [3] A. Haghighi, H. Ghejlo, N. Asghari, Explicit and implicit methods for fractional diffusion equations with the Riesz fractional derivative, Indian J. Sci. Technol., 6:7(2013), 48814885. [4] H. Ding, C. Li, Y. Chen, Highorder algorithms for Riesz derivative and their applications (I), Abstr. Appl. Anal., (2014) Article ID 653797. [5] B. Carreras, V. Lynch, G. Zaslavsky, Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model, Phys. Plasmas, 8:12(2001), 50965103. [6] R. Magin, Fractional calculus in bioengineering, Begell House Publishers, 2006. [7] M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advectiondispersion flow equations, J. Comput. Appl. Math., 172:1(2004), 6577. [8] M. Ortigueira, Riesz potential operators and inverses via fractional centred derivatives, Int. J. Math. Math. Sci., 2006(2006), 48391. [9] M. Ran, Y. He, Linearized CrankNicolson method for solving the nonlinear fractional diffusion equation with multidelay, Int. J. Comput. Math., doi:10.1080/00207160.2017.1398326, (2017). [10] C. Lubich, Discretized fractional calculus, SIAM J. Numer. Anal., 17:3(1986), 704719. [11] M. Chen, W. Deng, Fourth order accurate scheme for the space fractional diffusion equations, SIAM J. Numer. Anal., 52:3(2014), 14181438. [12] F. Lin, S. Yang, X. Jin, Preconditioned iterative methods for fractional diffusion equation, J. Comput. Phys., 256(2014), 109117. [13] X. Gu, T. Huang, X. Zhao, H. Li, L. Li, Strangtype preconditioners for solving fractional diffusion equations by boundary value methods, J. Comput. Appl. Math., 277(2015), 7386. [14] S. Lei, Y. Huang, Fast algorithms for highorder numerical methods for spacefractional diffusion equations, Int. J. Comput. Math., 94:5(2017), 10621078. [15] X. Zhao, Z. Sun, Z. Hao, A fourthorder compact ADI scheme for twodimensional nonlinear space fractional schrödinger equation, SIAM J. Sci. Comput., 36:6(2014), 28652886. [16] Z. Hao, Z. Sun, W. Cao, A fourthorder approximation of fractional derivatives with its applications, J. Comput. Phys., 281(2015), 787805. [17] L. Brugnano and D. Trigiante, Solving Differential Equations by Multistep Initial and Boundary Value Methods, Gordan and Breach, 1998. [18] M. Ran, C. Zhang, New compact difference scheme for solving the fourthorder time fractional subdiffusion equation of the distributed order, Appl. Numer. Math., 129(2018), 5870. [19] R. Chan, M. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38:3(1996), 427482. [20] D. Bertaccini, A circulant preconditioner for the systems of LMFbased ODE codes, SIAM J. Sci. Comput., 22:3(2000), 767786. [21] C. Zhang, H. Chen, Block boundary value methods for delay differential equations, Appl. Numer. Math., 60:9(2010), 915923. [22] H. Chen, C. Zhang, Boundary value methods for Volterra integral and integrodifferential equations, Appl. Math. Comput., 218:6(2011), 26192630. [23] C. Zhang, H. Chen, L. Wang, Strangtype preconditioners applied to ordinary and neutral differentialalgebraic equations, Numer. Linear Algebr. Appl., 18:5(2011), 843855. [24] L. Brugnano and D. Trigiante,Convergence and stability of boundary value methods for ordinary differential equations, J. Comput. Appl. Math., 66:12(1996), 97109. [25] Y. Saad, M. Schultz, GMRES:A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7:3(1986), 856869. [26] R.H. Chan, K.N. Michael, X.Q. Jin, Strangtype preconditioners for systems of LMFbased ODE codes, IMA J. Numer. Anal., 21:2(2001), 451462. [27] X. Jin, Developments and Applications of Block Toeplitz Iterative Solvers, Science Press, Beijing, 2006. [28] X. Jin, Preconditioning Techniques for Toeplitz Systems, Higher Education Press, Beijing, 2010. 
[1]  Yongtao Zhou, Chengjian Zhang, Huiru Wang. BOUNDARY VALUE METHODS FOR CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 108129. 
[2] 
Yidu Yang.
TWOGRID DISCRETIZATION SCHEMES OF THE NONCONFORMING FEM FOR EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2009, 27(6): 748763. 
[3]  Yuanming Wang, Benyu Guo . A MonotoneCompact Implicit Scheme for Nonlinear ReactionDiffusion Equations [J]. Journal of Computational Mathematics, 2008, 26(2): 123148. 
[4]  Fu Rong LIN. GENUINEOPTIMAL CIRCULANT PRECONDITIONERS FOR WIENERHOPF EQUATIONS [J]. Journal of Computational Mathematics, 2001, 19(6): 629638. 
Viewed  
Full text 


Abstract 

