Previous Articles Next Articles
Baiju Zhang1, Yan Yang2, Minfu Feng3
[1] R.A. Adams and J.J. Fournier, Sobolev Spaces, Academic Press, 2003.[2] S.C. Brenner and L.Y. Sung, C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains, J. Sci. Comput., 22(2005), 83-118.[3] M. Cayco and R. Nicolaides, Analysis of nonconforming stream function and pressure finite element spaces for the Navier-Stokes equations, Comput. Math. Appl., 18(1989), 745-760.[4] G. Chen and M. Feng, A C0-weak Galerkin finite element method for fourth-order elliptic problems, Numer. Methods Partial Diffierential Equations, 32(2016), 1090-1104.[5] G. Chen, M. Feng, and X. Xie, Robust globally divergence-free weak Galerkin methods for Stokes equations, J. Comput. Math., 34(2016), 549-572.[6] G. Chen, M. Feng, and X. Xie. A robust WG finite element method for convection-diffusionreaction equations. J. Comput. Appl. Math., 315(2017), 107-125.[7] G. Chen and X. Xie, A robust weak Galerkin finite element method for linear elasticity with strong symmetric stresses, Comput. Methods Appl. Math., 16(2016), 389-408.[8] K. Deimling, Nonlinear Functional Analysis. Springer Berlin Heidelberg, 1985.[9] D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Springer, 2011.[10] D.A. Di Pietro and S. Krell, A hybrid high-order method for the steady incompressible NavierStokes problem. arXiv preprint arXiv:1607.08159, 2016.[11] U. Ghia, K.N. Ghia, and C. Shin, High-Re solutions for incompressible flow using the NavierStokes equations and a multigrid method. J. Comput. Phys., 48(1982), 387-411.[12] V. Girault and P.-A. Raviart. Finite Element Methods for Navier-Stokes Equations:Theory and Algorithms, Springer, Berlin Heidelberg, 1986.[13] M. Gorazd and B. Mohammadi. NSIKE-An Incompressible Navier-Stokes Solver for Unstructured Meshes. PhD thesis, INRIA, 1999.[14] M.D. Gunzburger. Finite Element Methods for Viscous Incompressible Flows:A Guide to Theory, Practice, and Algorithms. Academic Press, 1989.[15] F. Hecht. New development in freefem++. J. Numer. Math., 20(2012), 251-265.[16] Y. Huang, J. Li, and D. Li. Developing weak Galerkin finite element methods for the wave equation. Numer. Methods Partial Differential Equations, 33(2017), 868-884.[17] L. Kovasznay. Laminar flow behind a two-dimensional grid. Math. Proc. Cambridge Philos. Soc., 44(1948), 58-62.[18] I. Mozolevski, E. Süli, and P. R. Bösing. Discontinuous Galerkin finite element approximation of the two-dimensional Navier-Stokes equations in stream-function formulation. Int. J. Numer. Methods Biomed. Eng., 23(2007), 447-459.[19] L. Mu, J. Wang, and X. Ye. Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes. Numer. Methods Partial Diffierential Equations, 30(2014), 1003-1029.[20] L. Mu, J. Wang, X. Ye, and S. Zhang. A C0-weak Galerkin finite element method for the biharmonic equation. J. Sci. Comput., 59(2014), 473-495.[21] Z. Shi and M. Wang. Finite Element Methods, Science Press, Beijing, 2013.[22] C. Wang and J. Wang. An efficient numerical scheme for the biharmonic equation by weak Galerkin finite element methods on polygonal or polyhedral meshes. Comput. Math. Appl., 68(2014), 2314-2330.[23] J. Wang and X. Ye. A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math., 241(2013), 103-115.[24] J. Wang and X. Ye. A weak Galerkin finite element method for the Stokes equations. Adv. Comput. Math., 422016), 155-174.[25] Q. Zhai, R. Zhang, and L. Mu, A new weak Galerkin finite element scheme for the Brinkman equations, Commun. Comput. Phys., 19(2016), 1409-1434.[26] R. Zhang and Q. Zhai, A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order, J. Sci. Comput., 64(2015), 559-585.[27] T. Zhang and T. Lin. The weak Galerkin finite element method for incompressible flow. J. Math. Anal. Appl., 464(2018), 247-265.[28] X. Zheng, C. Gang, and X. Xie. A divergence-free weak Galerkin method for quasi-Newtonian Stokes flows. Sci. China Math., 60(2017), 1-14. |
[1] | Linshuang He, Minfu Feng, Qiang Ma. PENALTY-FACTOR-FREE STABILIZED NONCONFORMING FINITE ELEMENTS FOR SOLVING STATIONARY NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(5): 728-755. |
[2] | Huaijun Yang, Dongyang Shi. UNCONDITIONALLY OPTIMAL ERROR ESTIMATES OF THE BILINEAR-CONSTANT SCHEME FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(1): 127-146. |
[3] | Yuping Zeng, Feng Wang, Zhifeng Weng, Hanzhang Hu. A POSTERIORI ERROR ESTIMATES FOR A MODIFIED WEAK GALERKIN FINITE ELEMENT APPROXIMATION OF SECOND ORDER ELLIPTIC PROBLEMS WITH DG NORM [J]. Journal of Computational Mathematics, 2021, 39(5): 755-776. |
[4] | Huaijun Yang, Dongyang Shi, Qian Liu. SUPERCONVERGENCE ANALYSIS OF LOW ORDER NONCONFORMING MIXED FINITE ELEMENT METHODS FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 63-80. |
[5] | Xiaocui Li, Xu You. MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 130-146. |
[6] | Rui Chen, Xiaofeng Yang, Hui Zhang. DECOUPLED, ENERGY STABLE SCHEME FOR HYDRODYNAMIC ALLEN-CAHN PHASE FIELD MOVING CONTACT LINE MODEL [J]. Journal of Computational Mathematics, 2018, 36(5): 661-681. |
[7] | C. Brennecke, A. Linke, C. Merdon, J. Schöberl. OPTIMAL AND PRESSURE-INDEPENDENT L2 VELOCITY ERROR ESTIMATES FOR A MODIFIED CROUZEIX-RAVIART STOKES ELEMENT WITH BDM RECONSTRUCTIONS [J]. Journal of Computational Mathematics, 2015, 33(2): 191-208. |
[8] | Xin He, Maya Neytcheva, Cornelis Vuik. ON PRECONDITIONING OF INCOMPRESSIBLE NON-NEWTONIAN FLOW PROBLEMS [J]. Journal of Computational Mathematics, 2015, 33(1): 33-58. |
[9] | Xin He, Maya Neytcheva. PRECONDITIONING THE INCOMPRESSIBLE NAVIER-STOKESEQUATIONS WITH VARIABLE VISCOSITY [J]. Journal of Computational Mathematics, 2012, 30(5): 461-482. |
[10] | Minfu Feng, Yanhong Bai, Yinnian He, Yanmei Qin. A NEW STABILIZED SUBGRID EDDY VISCOSITY METHOD BASED ON PRESSURE PROJECTION AND EXTRAPOLATED TRAPEZOIDAL RULE FOR THE TRANSIENT NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2011, 29(4): 415-440. |
[11] | M. Gunzburger, A. Labovsky. EFFECTS OF APPROXIMATE DECONVOLUTION MODELS ON THE SOLUTION OF THE STOCHASTIC NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2011, 29(2): 131-140. |
[12] | Thomas Y. Hou, Brian R. Wetton. STABLE FOURTH-ORDER STREAM-FUNCTION METHODS FOR INCOMPRESSIBLE FLOWS WITH BOUNDARIES [J]. Journal of Computational Mathematics, 2009, 27(4): 441-458. |
[13] | Houde Han Ming Yan. A Mixed Finite Element Method on a Staggered Mesh for Navier-Stokes Equations [J]. Journal of Computational Mathematics, 2008, 26(6): 816-824. |
[14] | Junping Wang, Xiaoshen Wang, Xiu Ye . Finite Element Methods for the Navier-Stokes Equations by $H(\rm{div})$ Elements [J]. Journal of Computational Mathematics, 2008, 26(3): 410-436. |
[15] | Yin Nian HE, Huan Ling MIAO, Chun Feng REN. A TWO-LEVEL FINITE ELEMENT GALERKIN METHOD FOR THE NONSTATIONARY NAVIER-STOKES EQUATIONS II: TIME DISCRETIZATION [J]. Journal of Computational Mathematics, 2004, 22(1): 33-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||