Previous Articles     Next Articles

AN ERROR ANALYSIS METHOD SPP-BEAM AND A CONSTRUCTION GUIDELINE OF NONCONFORMING FINITE ELEMENTS FOR FOURTH ORDER ELLIPTIC PROBLEMS

Jun Hu1, Shangyou Zhang2   

  • Received:2018-07-30 Revised:2018-09-13 Online:2020-01-15 Published:2020-01-15
  • Supported by:

    The first author was supported by the NSFC Projects 11625101, 91430213 and 11421101.

Jun Hu, Shangyou Zhang. AN ERROR ANALYSIS METHOD SPP-BEAM AND A CONSTRUCTION GUIDELINE OF NONCONFORMING FINITE ELEMENTS FOR FOURTH ORDER ELLIPTIC PROBLEMS[J]. Journal of Computational Mathematics, 2020, 38(1): 195-222.

Under two hypotheses of nonconforming finite elements of fourth order elliptic problems, we present a side-patchwise projection based error analysis method (SPP-BEAM for short). Such a method is able to avoid both the regularity condition of exact solutions in the classical error analysis method and the complicated bubble function technique in the recent medius error analysis method. In addition, it is universal enough to admit generalizations. Then, we propose a sufficient condition for these hypotheses by imposing a set of in some sense necessary degrees of freedom of the shape function spaces. As an application, we use the theory to design a P3 second order triangular H2 non-conforming element by enriching two P4 bubble functions and, another P4 second order triangular H2 nonconforming finite element, and a P3 second order tetrahedral H2 non-conforming element by enriching eight P4 bubble functions, adding some more degrees of freedom.

CLC Number: 

[1] P. Alfeld and M. Sirvent, The structure of multivariate superspline spaces of high degree, Math. Comp., 57(1991), 299-308.

[2] J.H. Argyris, I. Fried and D.W. Scharpf, The TUBA family of plate elements for the matrix displacement method, The Aeronautical Journal of the Royal Aeronautical Society, 72(1968), 514-517.

[3] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Third edition. Texts in Applied Mathematics, 15. Springer, New York, 2008.

[4] H.R. Chen and S.C. Chen, C0-nonconforming elements for a fourth-order elliptic problem, (Chinese) Math. Numer. Sin., 35(2013), 21-30.

[5] H.R. Chen, S.C. Chen and Z.H. Qiao, C0-nonconforming tetrahedral and cuboid elements for the three-dimensional fourth order elliptic problem, Numer. Math., 24(2013), 99-119.

[6] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

[7] B. Gao, S. Zhang and M. Wang, A note on the nonconforming finite elements for elliptic problems, J. Comput. Math., 29(2011), 215-226.

[8] T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems, Math. Comp., 79(2010), 2169-189.

[9] J. Hu, Y. Huang and S. Zhang, The lowest order differentiable finite element on rectangular grids, SIAM J. Numer. Anal., 49(2011), 135-1368.

[10] J. Hu, R. Ma and Z. Shi, A new a priori error estimate of nonconforming finite element methods, Sci. China Math., 57(2014), 887-902.

[11] J. Hu and S. Zhang, The minimal conforming Hk finite element spaces on Rn rectangular grids, Math. Comp., 84(2015), 563-579.

[12] J. Hu and S. Zhang, A canonical construction of Hm-nonconforming triangular elements, Ann. of Appl. Math., 33(2017), 266-288.

[13] S. P. Mao and Z. C. Shi, On the error bounds of nonconforming finite elements, Sci. China Math., 53(2010), 2917-2926.

[14] M.J.D. Powell and M. A. Sabin, Piecewise quadratic approximations on triangles, ACM Transactions on Mathematical Software, 3-4(1977), 316-325.

[15] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54(1990), 483-493.

[16] Z. Shi and M. Wang, Finite Element Methods (Chinese), Science Press, Beijing (2013).

[17] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley and Teubner, 1996.

[18] M. Wang and J. Xu, The Morley element for fourth order elliptic equations in any dimensions, Numer. Math., 103(2006), 155-169.

[19] M. Wang and J. Xu, Minimal finite element spaces for 2m-th-order partial differential equations in Rn, Math. Comp., 82(2013), 25-43.

[20] M. Wang, P. Zu and S. Zhang, High accuracy nonconforming finite elements for fourth order problems, Sci. China Math., 55(2012), 2183-2192.

[21] A. ?enišek, Alexander Polynomial approximation on tetrahedrons in the finite element method, J. Approx. Theory, 7(1973), 334-351.

[22] S. Zhang, A family of 3D continuously differentiable finite elements on tetrahedral grids, Appl. Numer. Math., 59(2009), 219-233.

[23] S. Zhang, A family of differentiable finite elements on simplicial grids in four space dimensions, Math. Numer. Sin., 38(2016), 309-324.
[1] Linshuang He, Minfu Feng, Qiang Ma. PENALTY-FACTOR-FREE STABILIZED NONCONFORMING FINITE ELEMENTS FOR SOLVING STATIONARY NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(5): 728-755.
[2] Dietmar Gallistl, Mira Schedensack. A ROBUST DISCRETIZATION OF THE REISSNER-MINDLIN PLATE WITH ARBITRARY POLYNOMIAL DEGREE [J]. Journal of Computational Mathematics, 2020, 38(1): 1-13.
[3] Yunqing Huang, Huayi Wei, Wei Yang, Nianyu Yi. RECOVERY BASED FINITE ELEMENT METHOD FOR BIHARMONIC EQUATION IN 2D [J]. Journal of Computational Mathematics, 2020, 38(1): 84-102.
[4] Carsten Carstensen, Sophie Puttkammer. HOW TO PROVE THE DISCRETE RELIABILITY FOR NONCONFORMING FINITE ELEMENT METHODS [J]. Journal of Computational Mathematics, 2020, 38(1): 142-175.
[5] Chunsheng Feng, Shuo Zhang. OPTIMAL SOLVER FOR MORLEY ELEMENT DISCRETIZATION OF BIHARMONIC EQUATION ON SHAPE-REGULAR GRIDS [J]. Journal of Computational Mathematics, 2016, 34(2): 159-173.
[6] Dongyang Shi, Caixia Wang, Qili Tang. ANISOTROPIC CROUZEIX-RAVIART TYPE NONCONFORMING FINITE ELEMENT METHODS TO VARIATIONAL INEQUALITY PROBLEM WITH DISPLACEMENT OBSTACLE [J]. Journal of Computational Mathematics, 2015, 33(1): 86-99.
[7] Hongru Chen, Shaochun Chen. UNIFORMLY CONVERGENT NONCONFORMING ELEMENT FOR 3-D FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM [J]. Journal of Computational Mathematics, 2014, 32(6): 687-695.
[8] Haifeng Niu, Danping Yang. FINITE ELEMENT ANALYSIS OF OPTIMAL CONTROL PROBLEM GOVERNED BY STOKES EQUATIONS WITH L2-NORM STATE-CONSTRAINTS [J]. Journal of Computational Mathematics, 2011, 29(5): 589-604.
[9] Boran Gao, Shuo Zhang, Ming Wang. A NOTE ON THE NONCONFORMING FINITE ELEMENTS FOR ELLIPTIC PROBLEMS [J]. Journal of Computational Mathematics, 2011, 29(2): 215-226.
[10] Xianmin Xu and Zhiping Li. A POSTERIORI ERROR ESTIMATES OF A NON-CONFORMING FINITE ELEMENT
METHOD FOR PROBLEMS WITH ARTIFICIAL BOUNDARY CONDITIONS
[J]. Journal of Computational Mathematics, 2009, 27(6): 677-696.
[11] Yidu Yang. TWO-GRID DISCRETIZATION SCHEMES OF THE NONCONFORMING FEM FOR
EIGENVALUE PROBLEMS
[J]. Journal of Computational Mathematics, 2009, 27(6): 748-763.
[12] Shipeng Mao and Zhong-ci Shi. EXPLICIT ERROR ESTIMATES FOR MIXED AND NONCONFORMING FINITE ELEMENTS [J]. Journal of Computational Mathematics, 2009, 27(4): 425-440.
[13] Dongyang Shi and Haihong Wang Yuepeng Du. An Anisotropic Nonconforming Finite Element Method for Approximating a Class of Nonlinear Sobolev Equations [J]. Journal of Computational Mathematics, 2009, 27(2-3): 299-314.
[14] Wenbin Liu, Wei Gong and Ningning Yan.

A New Finite Element Approximation of a State-constrained Optimal Control Problem

[J]. Journal of Computational Mathematics, 2009, 27(1): 97-114.
[15] Ming Wang, Weimeng Zhang . Local a Priori and a Posteriori Error Estimate of TQC9 Element for theBiharmonic Equation [J]. Journal of Computational Mathematics, 2008, 26(2): 196-208.
Viewed
Full text


Abstract