Previous Articles Next Articles
Haiyan Jiang1, Tiao Lu2, Xu Yin1
[1] E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 40:5(1932), 749-759. [2] D. Ferry and S. Goodnick, Transport in Nanostructures, Cambridge Univ. Press, Cambridge, U.K, 1997. [3] J. Shi and I. Gamba, A high order local solver for Wigner equation, International Workshop on Computational Electronics, (2004), 245-246. [4] W. Schleich, Quantum Optics in Phase Space, Wiley, England, 2001. [5] W. Frensley,Wigner function model of a resonant-tunneling semiconductor device, Phys. Rev. B, 36(1987), 1570-1580. [6] K. Jensen and F. Buot, Numerical simulation of transient response and resonant tunneling characteristics of double barrier semiconductor structures as a function of experimental parameters, J. Appl. Phys., 65:12(1989), 5248-5250. [7] K. Jensen and F. Buot, Numerical aspects on the simulation of IV characteristics and switching times of resonant tunneling diodes, J. Appl. Phys., 67(1990), 2153-2155. [8] A. Dorda and F. Schürrer, A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes, J. Comput. Phys., 284(2015), 95-116. [9] C. Ringhofer, A spectral method for the numerical solution of quantum tunneling phenomena, SIAM J. Num. Anal., 27(1990), 32-50. [10] C. Ringhofer, A spectral collocation technique for the solution of the Wigner-Poisson problem, SIAM Journal on Numerical Analysis, 29:3(1992), 679-700. [11] K. Kim and B. Lee, On the high order numerical calculation schemes for the Wigner transport equation, Solid-State Electronics, 43:12(1999), 2243-2245. [12] D. Yin, M. Tang, and S. Jin, The Gaussian beam method for the Wigner equation with discontinuous potentials, Inverse Problems & Imaging, 7:3(2013). [13] Z. Cai, Y. Fan, R. Li, T. Lu, and Y. Wang, Quantum hydrodynamics models by moment closure of Wigner equation, J. Math. Phys., 53:103503(2012). [14] R. Li, T. Lu, Y. Wang, and W. Yao, Numerical method for high order hyperbolic moment system of Wigner equation, Commun. Comput. Phys., 9:3(2014), 659-698. [15] S. Shao, T. Lu, and W. Cai, Adaptive conservative cell average spectral element methods for transient Wigner equation in quantum transport, Commun. Comput. Phys., 9(2011), 711-739. [16] P. Markowich and C. Ringhofer, An analysis of the quantum liouville equation, Z. angew. Math. Mech., 69(1989), 121-127. [17] H. Jiang and W. Cai, Effect of boundary treatments on quantum transport current in the Green's function and Wigner distribution methods for a nano-scale DG-MOSFET, J. Comput. Phys., 229:12(2010), 4461-4475. [18] H. Jiang, W. Cai, and R. Tsu, Accuracy of the frensley inflow boundary condition for Wigner equations in simulating resonant tunneling diodes, J. Comput. Phys., 230(2011), 2031-2044. [19] H. Jiang, T. Lu, and W. Cai, A device adaptive inflow boundary condition for Wigner equations of quantum transport, J. Comput. Phys., 248(2014), 773-786. [20] A. Arnold, H. Lange, and P. Zweifel, A discrete-velocity, stationary Wigner equation, J. Math. Phys., 41:11(2000), 7167-7180. [21] T. Goudon, Analysis of a semidiscrete version of the Wigner equation, SIAM J. Numerical Analysis, 40:6(2003), 2007-2025. [22] R. Li, T. Lu, and Z.P. Sun, Stationary wigner equation with inflow boundary conditions:Will a symmetric potential yield a symmetric solution?, SIAM J. Appl. Math., 70:3(2014), 885-897. [23] R. Li, T. Lu, and Z.P. Sun, Parity-decomposition and moment analysis for stationary Wigner equation with inflow boundary conditions, Frontiers of Mathematics in China, 12:4(2017), 907-919. [24] R. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations:SteadyState and Time-Dependent Problems, Society for Industrial and Applied Mathematics, Philadelphia, 2007. |
[1] | Baiying Dong, Xiufeng Feng, Zhilin Li. AN L∞ SECOND ORDER CARTESIAN METHOD FOR 3D ANISOTROPIC INTERFACE PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(6): 882-912. |
[2] | Libin Liu, Yanping Chen, Ying Liang. NUMERICAL ANALYSIS OF A NONLINEAR SINGULARLY PERTURBED DELAY VOLTERRA INTEGRO-DIFFERENTIAL EQUATION ON AN ADAPTIVE GRID [J]. Journal of Computational Mathematics, 2022, 40(2): 258-274. |
[3] | Pengzhan Huang, Yinnian He, Ting Li. A FINITE ELEMENT ALGORITHM FOR NEMATIC LIQUID CRYSTAL FLOW BASED ON THE GAUGE-UZAWA METHOD [J]. Journal of Computational Mathematics, 2022, 40(1): 26-43. |
[4] | Yuping Zeng, Feng Wang, Zhifeng Weng, Hanzhang Hu. A POSTERIORI ERROR ESTIMATES FOR A MODIFIED WEAK GALERKIN FINITE ELEMENT APPROXIMATION OF SECOND ORDER ELLIPTIC PROBLEMS WITH DG NORM [J]. Journal of Computational Mathematics, 2021, 39(5): 755-776. |
[5] | Pouria Assari, Fatemeh Asadi-Mehregan, Mehdi Dehghan. LOCAL GAUSSIAN-COLLOCATION SCHEME TO APPROXIMATE THE SOLUTION OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS USING VOLTERRA INTEGRAL EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(2): 261-282. |
[6] | Mohammad Tanzil Hasan, Chuanju Xu. HIGH ORDER FINITE DIFFERENCE/SPECTRAL METHODS TO A WATER WAVE MODEL WITH NONLOCAL VISCOSITY [J]. Journal of Computational Mathematics, 2020, 38(4): 580-605. |
[7] | Christiane Helzel, Maximilian Schneiders. NUMERICAL APPROXIMATION OF THE SMOLUCHOWSKI EQUATION USING RADIAL BASIS FUNCTIONS [J]. Journal of Computational Mathematics, 2020, 38(1): 176-194. |
[8] | Jun Hu, Shangyou Zhang. AN ERROR ANALYSIS METHOD SPP-BEAM AND A CONSTRUCTION GUIDELINE OF NONCONFORMING FINITE ELEMENTS FOR FOURTH ORDER ELLIPTIC PROBLEMS [J]. Journal of Computational Mathematics, 2020, 38(1): 195-222. |
[9] | Yubo Yang, Heping Ma. A LINEAR IMPLICIT L1LEGENDRE GALERKIN CHEBYSHEV COLLOCATION METHOD FOR GENERALIZED TIME-AND SPACE-FRACTIONAL BURGERS EQUATION [J]. Journal of Computational Mathematics, 2019, 37(5): 629-644. |
[10] | Tingchun Wang, Xiaofei Zhao, Mao Peng, Peng Wang. EFFICIENT AND ACCURATE NUMERICAL METHODS FOR LONG-WAVE SHORT-WAVE INTERACTION EQUATIONS IN THE SEMICLASSICAL LIMIT REGIME [J]. Journal of Computational Mathematics, 2019, 37(5): 645-665. |
[11] | Yuze Zhang, Yushun Wang, Yanhong Yang. THE STRUCTURE-PRESERVING METHODS FOR THE DEGASPERIS-PROCESI EQUATION [J]. Journal of Computational Mathematics, 2019, 37(4): 475-487. |
[12] | Ying Yang, Benzhuo Lu, Yan Xie. A DECOUPLING TWO-GRID METHOD FOR THE STEADY-STATE POISSON-NERNST-PLANCK EQUATIONS [J]. Journal of Computational Mathematics, 2019, 37(4): 556-578. |
[13] | Randolph E. Bank, Maximilian S. Metti. A DIAGONALLY-IMPLICIT TIME INTEGRATION SCHEME FOR SPACE-TIME MOVING FINITE ELEMENTS [J]. Journal of Computational Mathematics, 2019, 37(3): 360-383. |
[14] | Tiao Lu, Zhangpeng Sun. SINGULARITY-FREE NUMERICAL SCHEME FOR THE STATIONARY WIGNER EQUATION [J]. Journal of Computational Mathematics, 2019, 37(2): 170-183. |
[15] | Zhoufeng Wang, Peiqi Huang. AN ADAPTIVE FINITE ELEMENT METHOD FOR THE WAVE SCATTERING BY A PERIODIC CHIRAL STRUCTURE [J]. Journal of Computational Mathematics, 2018, 36(6): 845-865. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||