Previous Articles Next Articles
Xuhong Yu, Lusha Jin, Zhongqing Wang
[1] Q. Ai, H.Y Li and Z.Q Wang, Diagonalized Legendre spectral methods using Sobolev orthogonal polynomials for elliptic boundary value problems, Appl. Numer. Math., 127(2018), 196210. [2] C. Bernardi and Y. Maday, Spectral methods, in Handbook of Numerical Analysis, Vol. V, P. G. Ciarlet and J. L. Lions, eds., Techniques of Scientific Computing (Part 2), Elsevier, Amsterdam, 1997. [3] J.L. Bona, S.M Sun and B.Y Zhang, A nonhomogeneous boundaryvalue problem for the Kortewegde Vries equation posed on a finite domain, Comm. Partial Differential Equations, 28(2003), 13911436. [4] J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd edn., Dover, New York, 2001. [5] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods, Fundamentals in Single Domains, Springer, Berlin, 2006. [6] T. Colin and J.M. Ghidaglia, An initialboundaryvalue problem for the Kortewegde Vries equation posed on a finite interval, Adv. Diff. Eq., 6(2001), 14631492. [7] L. Fernández, F. Marcellán, T.E. Pérez, Miguel A. Piñar and Yuan Xu, Sobolev orthogonal polynomials on product domains, J. Comput. Anal. Appl., 284(2015), 202215. [8] D. Funaro, Polynomial Approximation of Differential Equations, SpringerVerlag, Berlin, 1992. [9] O. Goubet and J. Shen, On the dual PetrovGalerkin formulation of the KdV equation on a finite interval, Adv. Differential Equations, 12(2007), 221239. [10] B.Y. Guo, Spectral Methods and Their Applications, World Scientific, Singapore, 1998. [11] B.Y. Guo, S.N. He and H.P. Ma, Chebyshev spectralfinite element method for two dimensional unsteady NavierStokes equation, J. Comput. Math., 20(2002), 6578. [12] B.Y. Guo and J. Li, FourierChebyshev spectral method for the twodimensional NavierStokes equations, SIAM J. Numer. Anal., 33(1996), 11691187. [13] B.Y. Guo, H.P. Ma, W.M. Cao and H. Huang, The FourierChebyshev spectral method for solving twodimensional unsteady vorticity equations, J. Comput. Phys., 101(1992), 207217. [14] W.Z. Huang and D.M. Sloan, The pseudospectral method for thirdorder differential equations, SIAM J. Numer. Anal., 29(1992), 16261647. [15] R. Kawahara, Oscillatory solitary waves in dispersive media, J. Phys. Soc. Jpn., 33(1972), 260264. [16] J.M. Li, Z.Q. Wang and H.Y. Li, Fully diagonalized Chebyshev spectral methods for second and fourth order elliptic boundary value problems, Inter. J. Numer. Anal. Modeling, 15(2018), 243259. [17] H.P. Ma and B.Y. Guo, The Chebyshev spectral method for Burgerslike equations, J. Comput. Math., 6(1988), 4853. [18] H.P. Ma and W.W. Sun, A Legendre petrov Galerkin and Chebyshev collocation method for thirdorder differential equations, SIAM J. Numer. Anal., 38(2000), 14251438. [19] H.P. Ma and W.W. Sun, Optimal error estimates of the LegendrePetrovGalerkin method for the Kortewegde Vries equation, SIAM J. Numer. Anal., 39(2001), 13801394. [20] F. Marcellán and Y. Xu, On Sobolev orthogonal polynomials, Expo. Math., 33(2015), 308352. [21] W.J. Merryfield and B. Shizgal, Properties of collocation thirdderivative operators, J. Comput. Phys., 105(1993), 182185. [22] J. Shen, Efficient spectralGalerkin method Ⅱ. Direct solvers of second and fourthorder equations using Chebyshev polynomials, SIAM J. Sci. Comput., 16(1995), 7487. [23] J. Shen, A new dualPetrovGalerkin method for third and higher oddorder differential equations application to the KdV equation, SIAM J. Numer. Anal., 41(2003), 15951619. [24] J. Shen and T. Tang, Spectral and Highorder Methods with Applications, Science Press, Beijing, 2006. [25] J. Shen, T. Tang and L.L. Wang, Spectral methods:Algorithms, Analysis and Applications, SpringerVerlag, Berlin, 2011. [26] J. Shen and L.L. Wang, Legendre and Chebyshev dualPetrovGalerkin methods for Hyperbolic equations, Comput. Methods Appl. Mech. Engrg., 196(2007), 37853797. [27] J. Shen and L.L. Wang, Fourierization of the LegendreGalerkin method and a new spacetime spectral method, Appl. Numer. Math., 57(2007), 710720. [28] J.M. Yuan, J. Shen and J.H. Wu, A dualPetrovGalerkin method for the Kawaharatype equations, J. Sci. Comput., 34(2008), 4863. 
[1]  Changfeng Ma. A FEASIBLE SEMISMOOTH GAUSSNEWTON METHOD FOR SOLVING A CLASS OF SLCPS [J]. Journal of Computational Mathematics, 2012, 30(2): 197222. 
[2]  Li Ping HE,Shun Kai SUN. THE PREDICTIONCORRECTION LEGENDRE COLLOCATION METHOD FOR NONLINEAR EVOLUTIONARY PROBLEMS [J]. Journal of Computational Mathematics, 2004, 22(5): 753768. 
[3]  I.D. Coope C.J. Price. A DIRECT SEARCH FRAMEBASED CONJUGATE GRADIENTS METHOD [J]. Journal of Computational Mathematics, 2004, 22(4): 489500. 
Viewed  
Full text 


Abstract 

