[1] A. Auslender, R.Shefi and M. Teboulle, A Moving balls approximation method for a class of smooth constrained minimization problems. SIAM J. Optim., 20(2010), 3232-3259.[2] A. Auslender, A very simple SQCQP method for a class of smooth convex constrained minimization problems with nice convergence results. Math. Program., 142(2013), 349-369.[3] A. Beck and M. Teboulle, A fast iterative shrinkage-treshold algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(2009), 183-202.[4] D. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, MA, 1999.[5] D. Blatt, A. O. Hero and H. Gauchman, A convergent incremental gradient method with a constant step size. SIAM Journal on Optimization, 18(2007), 29-51.[6] D. Lan, Z. Lu and R. D. C. Monteiro, Primal-dual first-order methods with O(1/ε) iterationcomplexity for cone programming. Math. Program. Ser. A, 126(2011), 1-29.[7] J. Jacod and P. Protter, Martingale convergence theorems. Springer berlin heidelberg, 2000.[8] K. Lange, Numerical Analysis for Statisticians, 2nd edn. Statistics and Computing. Springer, New York, 2010.[9] J. W. Liu, Z. K. Sun and X. L. Luo, Non-integer norm regularized logistic regression. The 26th Chinese Control and Decision Conference (2014 CCDC), Changsha, (2014), 1333-1338.[10] J. Mairal, Optimization with first-order surrogate functions. International Conference on Machine Learning, 2013.[11] R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive. variance reduction. Advances in Neural Information Processing Systems, 26(2013), 315-323.[12] N. Le Roux, M. Schmidt and F. Bach, A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets. Advances in Neural Information Processing Systems, 2012.[13] A. Nemirovski, A. Juditsky, G. Lan and A. Shapiro, Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(2009), 1574-1609.[14] Y. Nesterov, Introductory Lectures on Convex Optimization. A Basic Course, Appl. Optim. 87, Kluwer Academic, Boston, MA, 2004.[15] Y. Nesterov, Smooth minimization of non-smooth functions, Math. Program. Ser. A, 103(2005), 127-152.[16] M. Schmidt, N. Le Roux and F. Bach, Minimizing finite sums with the stochastic average gradient. Technical Report HAL 00860051, INRIA, Paris, France, 2013.[17] R. Shefi and M. Teboulle, A dual method for minimizing a nonsmooth objective over one smooth inequality constraint. Math. Program. Ser. A, 126(2015), 1-28.[18] P. Tseng, Approximation accuracy, gradientmethods, and error bound for structured convex optimization. Math. Program. Ser. B, 125(2010), 263-295.[19] L. Xiao and T. Zhang, A proximal stochastic gradient method with progressive variance reduction. SIAM J. Optim., 4(2014), 2057-2075.[20] H. Zou and T. Hastie, Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B(Stat. Method.) 67(2005), 301-320. |