Leiwu Zhang
[1] A. Auslender, R.Shefi and M. Teboulle, A Moving balls approximation method for a class of smooth constrained minimization problems. SIAM J. Optim., 20(2010), 32323259. [2] A. Auslender, A very simple SQCQP method for a class of smooth convex constrained minimization problems with nice convergence results. Math. Program., 142(2013), 349369. [3] A. Beck and M. Teboulle, A fast iterative shrinkagetreshold algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(2009), 183202. [4] D. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, MA, 1999. [5] D. Blatt, A. O. Hero and H. Gauchman, A convergent incremental gradient method with a constant step size. SIAM Journal on Optimization, 18(2007), 2951. [6] D. Lan, Z. Lu and R. D. C. Monteiro, Primaldual firstorder methods with O(1/ε) iterationcomplexity for cone programming. Math. Program. Ser. A, 126(2011), 129. [7] J. Jacod and P. Protter, Martingale convergence theorems. Springer berlin heidelberg, 2000. [8] K. Lange, Numerical Analysis for Statisticians, 2nd edn. Statistics and Computing. Springer, New York, 2010. [9] J. W. Liu, Z. K. Sun and X. L. Luo, Noninteger norm regularized logistic regression. The 26th Chinese Control and Decision Conference (2014 CCDC), Changsha, (2014), 13331338. [10] J. Mairal, Optimization with firstorder surrogate functions. International Conference on Machine Learning, 2013. [11] R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive. variance reduction. Advances in Neural Information Processing Systems, 26(2013), 315323. [12] N. Le Roux, M. Schmidt and F. Bach, A stochastic gradient method with an exponential convergence rate for stronglyconvex optimization with finite training sets. Advances in Neural Information Processing Systems, 2012. [13] A. Nemirovski, A. Juditsky, G. Lan and A. Shapiro, Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(2009), 15741609. [14] Y. Nesterov, Introductory Lectures on Convex Optimization. A Basic Course, Appl. Optim. 87, Kluwer Academic, Boston, MA, 2004. [15] Y. Nesterov, Smooth minimization of nonsmooth functions, Math. Program. Ser. A, 103(2005), 127152. [16] M. Schmidt, N. Le Roux and F. Bach, Minimizing finite sums with the stochastic average gradient. Technical Report HAL 00860051, INRIA, Paris, France, 2013. [17] R. Shefi and M. Teboulle, A dual method for minimizing a nonsmooth objective over one smooth inequality constraint. Math. Program. Ser. A, 126(2015), 128. [18] P. Tseng, Approximation accuracy, gradientmethods, and error bound for structured convex optimization. Math. Program. Ser. B, 125(2010), 263295. [19] L. Xiao and T. Zhang, A proximal stochastic gradient method with progressive variance reduction. SIAM J. Optim., 4(2014), 20572075. [20] H. Zou and T. Hastie, Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B(Stat. Method.) 67(2005), 301320. 
[1]  Ning Du, Wanfang Shen. A FAST STOCHASTIC GALERKIN METHOD FOR A CONSTRAINED OPTIMAL CONTROL PROBLEM GOVERNED BY A RANDOM FRACTIONAL DIFFUSION EQUATION [J]. Journal of Computational Mathematics, 2018, 36(2): 259275. 
[2]  Kun Xu, Zhaoli Guo. MULTIPLE TEMPERATURE GAS DYNAMIC EQUATIONS FOR NONEQUILIBRIUM FLOWS [J]. Journal of Computational Mathematics, 2011, 29(6): 639660. 
Viewed  
Full text 


Abstract 

