Previous Articles Next Articles
Yuting Chen1, Mingyuan Cao2, Yueting Yang2, Qingdao Huang3
Yuting Chen, Mingyuan Cao, Yueting Yang, Qingdao Huang. AN ADAPTIVE TRUST-REGION METHOD FOR GENERALIZED EIGENVALUES OF SYMMETRIC TENSORS[J]. Journal of Computational Mathematics, 2021, 39(3): 358-374.
[1] L.H. Lim, Singular values and eigenvalues of tensors:a variational approach, in Computational Advances in Multi-Sensor Adaptive Processing, 20051st IEEE International Workshop on, 2005, pp. 129-132. [2] L.Q. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40:6(2005), 1302-1324. [3] K.C. Chang, K. Pearson and T. Zhang, On eigenvalue problems of real symmetric tensors, J. Math. Anal. Appl., 350:1(2009), 416-422. [4] G.Y. Li, L.Q. Qi and G.H. Yu, The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory, Numer. Linear. Algebr., 20:6(2013), 1001-1029. [5] Q. Ni and L.Q. Qi, A quadratically convergent algorithm for finding the largesteigenvalue of a nonnegative homogeneous polynomial map, J. Glob. Optim., 61:4(2015), 627-641. [6] J.S. Xie and A. Chang, H-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph, Front. Math. China., 8:1(2013), 107-127. [7] J.S. Xie and A. Chang, On the Z-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph, Numer. Linear. Algebr., 20:6(2013), 1030-1045. [8] F. Zhang, B.Y. Zhou, L.Z. Peng, Gradient skewness tensors and local illumination detection for images, J. Comput. Appl. Math., 237:1(2013), 663-671. [9] J.M. Papy, L. De Lathauwer and S. Van Huffel, Exponential data fitting using multilinear algebra:The single-channel and multi-channel case, Numer. Linear. Algebr., 12:8(2005), 809-826. [10] J.M. Papy, L. De Lathauwer and S. Van Huffel, Exponential data fitting using multilinear algebra:The decimative case, J. Chemometr., 23:7-8(2009), 341-351. [11] L.Q. Qi and K.L. Teo, Multivariate polynomial minimization and its application in signal processing, J. Glob. Optim., 26:4(2003), 419-433. [12] T.C. Wei and P.M. Goldbart, Geometric mearsure of entanglement and applications to bipartite and multipartite quantum states, Phys. Rev. A., 68:1(2003), 042307. [13] Q. Ni, L.Q. Qi and F. Wang, An eigenvalue method for testing positive definiteness of a multivariate form, IEEE. T. Automat. Contr., 53:5(2008), 1096-1107. [14] J.F. Cardoso, High-order contrasts for independent component analysis, Neural. Comput., 11:1(1999), 157-192. [15] L. Lathauwer, P. Comon, B. Moor and J. Vandewalle, High-order power method-application in independent component analysis, in Proceeding of the International Symposium on Nonlinear Theory and its Applications (NOLTA'95), Las Vegas, Nevada, 1995, pp. 91-96. [16] L. De Lathauwer, B. De Moor and J. Vandewalle, On the best rank-1 and rank-(R1, R2,..., RN) approximation of higher-order tensors, SIAM. J. Matrix. Anal. A., 21:4(2000), 1324-1342. [17] E. Kofidis and P.A. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM. J. Matrix. Anal. A., 23:3(2002), 863-884. [18] C.L. Hao, C.F. Cui and Y.H. Dai, A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors, Numer. Linear. Algebr., 22:2(2015), 283-298. [19] C.L. Hao, C.F. Cui and Y.H. Dai, A feasible trust-region method for calculating extreme Z-eigenvalues of symmetric tensors, Pac. J. Optim., 11:2(2015), 291-307. [20] L.Q. Qi, F. Wang and Y.J. Wang, Z-eigenvalue methods for a global polynomial optimization problem, Math. Program., 118:2(2009), 301-316. [21] G.H. Yu, Z.F. Yu, Y. Xu, Y.S. Song and Y. Zhou, An adaptive gradient method for computing generalized tensor eigenpairs, Comput. Optim. Appl., 65:3(2016), 781-797. [22] J. Nocedal and S. Wright, Numerical Optimization, Springer, New York, 1999. [23] Z.C. Cui and B.Y. Wu, A new modified nomonotone adaptive trust region method for unconstrained optimization, Comput. Optim. Appl., 53:3(2012), 795-806. [24] G.D. Li, Trust region method with automatic determination of the trust region radius, Chinese Journal of Engineering Mathematics., 23:5(2006), 843-848. (in Chinese) [25] S. Wang, M. Wu and Z. Jia, Matrix Inequality, Science Press, 2ed, 2006. (in Chinese) [26] M.Y. Cao, Q.D. Huang and Y.T. Yang, A self-adaptive trust region method for extreme B-eigenvalues of symmetric tensors. Numer. Algorithms., 81:2(2019), 407-420. [27] J.W. Nie and L. Wang, Semidefinite relaxations for best rank-1 tensor approximations, SIAM. J. Matrix. Anal. A., 35:3(2014), 1155-1179. [28] E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91:2(2002), 201-213. |
[1] | Mingming Zhao, Yongfeng Li, Zaiwen Wen. A STOCHASTIC TRUST-REGION FRAMEWORK FOR POLICY OPTIMIZATION [J]. Journal of Computational Mathematics, 2022, 40(6): 1004-1030. |
[2] | Xinlong Luo, Yiyan Yao. PRIMAL-DUAL PATH-FOLLOWING METHODS AND THE TRUST-REGION UPDATING STRATEGY FOR LINEAR PROGRAMMING WITH NOISY DATA [J]. Journal of Computational Mathematics, 2022, 40(5): 756-776. |
[3] | Xiaoyu Wang, Ya-xiang Yuan. STOCHASTIC TRUST-REGION METHODS WITH TRUST-REGION RADIUS DEPENDING ON PROBABILISTIC MODELS [J]. Journal of Computational Mathematics, 2022, 40(2): 294-334. |
[4] | Keke Zhang, Hongwei Liu, Zexian Liu. A NEW ADAPTIVE SUBSPACE MINIMIZATION THREE-TERM CONJUGATE GRADIENT ALGORITHM FOR UNCONSTRAINED OPTIMIZATION [J]. Journal of Computational Mathematics, 2021, 39(2): 159-177. |
[5] | Wenjuan Xue, Weiai Liu. A MULTIDIMENSIONAL FILTER SQP ALGORITHM FOR NONLINEAR PROGRAMMING [J]. Journal of Computational Mathematics, 2020, 38(5): 683-704. |
[6] | Liqiang Song, Wei Hong Yang. A BLOCK LANCZOS METHOD FOR THE CDT SUBPROBLEM [J]. Journal of Computational Mathematics, 2019, 37(2): 240-260. |
[7] | Bothina El-Sobky, Abdallah Abotahoun. A TRUST-REGION ALGORITHM FOR SOLVING MINI-MAX PROBLEM [J]. Journal of Computational Mathematics, 2018, 36(6): 776-791. |
[8] | Fan Jiang, Deren Han, Xiaofei Zhang. A TRUST-REGION-BASED ALTERNATING LEAST-SQUARES ALGORITHM FOR TENSOR DECOMPOSITIONS [J]. Journal of Computational Mathematics, 2018, 36(3): 351-373. |
[9] | Caixia Kou, Zhongwen Chen, Yuhong Dai, Haifei Han. AN AUGMENTED LAGRANGIAN TRUST REGION METHOD WITH A BI-OBJECT STRATEGY [J]. Journal of Computational Mathematics, 2018, 36(3): 331-350. |
[10] | Yangyang Xu. FAST ALGORITHMS FOR HIGHER-ORDER SINGULAR VALUE DECOMPOSITION FROM INCOMPLETE DATA [J]. Journal of Computational Mathematics, 2017, 35(4): 397-422. |
[11] | Jinkui Liu, Shengjie Li. SPECTRAL DY-TYPE PROJECTION METHOD FOR NONLINEAR MONOTONE SYSTEM OF EQUATIONS [J]. Journal of Computational Mathematics, 2015, 33(4): 341-355. |
[12] | Jinghui Liu, Changfeng Ma. A NEW NONMONOTONE TRUST REGION ALGORITHM FOR SOLVING UNCONSTRAINED OPTIMIZATION PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(4): 476-490. |
[13] | Fusheng Wang, Chuanlong Wang, Li Wang. A NEW TRUST-REGION ALGORITHM FOR FINITE MINIMAX PROBLEM [J]. Journal of Computational Mathematics, 2012, 30(3): 262-278. |
[14] | Xuebin Wang, Changfeng Ma, Meiyan Li. A SMOOTHING TRUST REGION METHOD FOR NCPS BASED ON THE SMOOTHING GENERALIZED FISCHER-BURMEISTER FUNCTION [J]. Journal of Computational Mathematics, 2011, 29(3): 261-286. |
[15] | Duoquan Li. A NEW SQP-FILTER METHOD FOR SOLVING NONLINEAR PROGRAMMING PROBLEMS [J]. Journal of Computational Mathematics, 2006, 24(5): 609-634. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||